Connect with us

science

Um oceano pode estar escondido dentro da lua de Saturno chamada ‘Estrela da Morte’

Published

on

Isto é uma lua… e uma bola de gelo encharcada?

Com uma grande cratera esculpida em sua superfície, Mimas, a lua de Saturno com 250 milhas de largura, tem mais do que uma semelhança passageira com a Estrela da Morte em “Guerra nas Estrelas”. (Quando a Millennium Falcon encontra pela primeira vez a Estrela da Morte, Obi-Wan Kenobi disse ameaçadoramente: “Isto não é uma lua. É uma estação espacial.”)

Por oito anos, os cientistas pensaram que Mimas, uma bola aparentemente empolada de gelo sólido congelado, pode estar escondendo um segredo: um oceano que flui de 14 a 20 milhas abaixo da superfície.

Nos últimos anos, esses mundos oceânicos – Europa em Júpiter E Encélado em Saturno, para citar alguns – pule para o topo das listas de cientistas que consideram lugares no sistema solar onde a vida poderia ter surgido. Um nave espacial da NASA, Juno, Ele contornará a Europa para um olhar mais atento este ano e outra missão, o Europa Clipper, deve obter uma missão dedicada lá em 2030.

Mas, ao contrário de outras luas geladas conhecidas por terem oceanos gelados, a superfície de Mimas não oferece indícios de rachaduras ou derretimento que indiquem folga no interior. Também acrescentou à ingenuidade científica que o interior de uma pequena lua como Mimas poderia ser quente o suficiente para que o oceano permanecesse descongelado.

O cientista planetário que achava improvável a ideia de um oceano Mimas agora acharia a termodinâmica plausível.

“Mudei de ideia recentemente”, disse Alyssa Roden, geofísica de geleiras do Southwest Research Institute em Boulder, Colorado. Tem um oceano que desafiaria nossas intuições sobre Mimas. E quando percebi, pensei: Bem, não é assim que os cientistas devem trabalhar. Não chegamos a uma conclusão sem realmente testar a hipótese.

READ  Os cientistas calcularam a probabilidade de outra pandemia no nível de COVID

Dr. Rhoden, juntamente com Matthew Walker do Planetary Science Institute, baseado em Tucson, Arizona, criou simulações de computador para explorar as forças de maré de Saturno e Mimas. Eles descobriram que o calor gerado pelas marés, que pressionariam a lua, poderia ser suficiente para sustentar o suposto oceano.

“Funciona muito bem”, disse Rhoden esta semana.

Uma das chaves para explicar a ausência de fendas é que o oceano, se houver, se formou há relativamente pouco tempo. Também pode ser constante em tamanho ou ficar maior. Quando a água congela em gelo, ela se expande em volume e a pressão ascendente quebraria o gelo acima.

“A crosta de gelo não pode engrossar hoje”, disse Roden. “Então a temperatura de Mimas deve subir ou deve ficar estável.”

A sugestão da existência do oceano de Mimas vem de medições da sonda Cassini da NASA, que orbitou Saturno de 2004 a 2017. A órbita de Mimas está progressivamente travada com Saturno: o mesmo lado da Lua está sempre voltado para o planeta dos anéis, assim como na Terra vemos apenas um planeta do lado da lua da Terra. Mas em 2014, os cientistas relataram uma flutuação maior do que o esperado na rotação de Mimas. Isso indica que o coração de Mimas pode ter se expandido na direção de Saturno ou que havia um oceano.

Radwan Tajeddin, principal autor do livro 2014 artigo publicado na Science. “O que é incrível sobre este artigo é que ele realmente mostra que se você usar apenas propriedades razoáveis ​​do gelo e aplicar um modelo mais complexo, você pode realmente colocar um oceano dentro e sobreviver”.

William McKinnon, professor de ciências da Terra e planetárias na Universidade de Washington em St. Louis, continua cético. “Minha resposta curta é, isso é difícil de acreditar”, disse ele em um e-mail. “Não há nada na superfície de Mimas que diga ‘oceano’ ou ‘alto fluxo de calor’, ao contrário de Encélado.”

READ  O sol desencadeia uma intensa erupção solar de categoria X, com mais por vir

Outra possibilidade – um interior sólido estendido – também permanece plausível. As respostas podem ter que esperar por uma futura sonda robótica de Saturno que possa fazer medições mais detalhadas de Mimas.

“É outra peça do quebra-cabeça”, disse o Dr. Taj El-Din. “Este artigo diz que o oceano não é uma ideia maluca.”

Continue Reading
Click to comment

Leave a Reply

O seu endereço de e-mail não será publicado. Campos obrigatórios são marcados com *

science

Podemos ter detectado a primeira explosão magnética fora da nossa galáxia

Published

on

Podemos ter detectado a primeira explosão magnética fora da nossa galáxia
Mais Zoom / M82, o local do que é provavelmente uma explosão gigante de um magnetar.

NASA, ESA e a equipe do legado do Hubble

Os raios gama são uma ampla classe de fótons de alta energia, incluindo qualquer coisa com mais energia que os raios X. Embora muitas vezes surjam de processos como o decaimento radioativo, poucos eventos astronômicos os produzem em quantidades suficientes para que possam ser detectados quando a radiação se origina em outra galáxia.

Porém, a lista é maior que uma, o que significa que a descoberta dos raios gama não significa que conhecemos o evento que levou ao seu aparecimento. A baixas energias, podem ser produzidos nas regiões circundantes dos buracos negros e por estrelas de neutrões. As supernovas também podem produzir uma explosão repentina de raios gama, assim como a fusão de objetos compactos, como estrelas de nêutrons.

Depois, há magnetares. Estas são estrelas de nêutrons que, pelo menos temporariamente, possuem campos magnéticos intensos de >1012 Muitas vezes mais forte que o campo magnético do sol. Os magnetares podem sofrer explosões e até explosões gigantes, pois emitem grandes quantidades de energia, incluindo raios gama. Estas explosões podem ser difíceis de distinguir das explosões de raios gama resultantes da fusão de objetos compactos, pelo que as únicas explosões magnéticas gigantes confirmadas ocorreram na nossa galáxia ou nos seus satélites. Até agora parece.

o que é que foi isso

A explosão em questão foi monitorizada pela Agência Espacial Europeia Observatório Integrado de Raios Gama, entre outros, em novembro de 2023. GRB 231115A era curto, durando apenas cerca de 50 milissegundos em alguns comprimentos de onda. Embora explosões mais longas de raios gama possam ser produzidas pela formação de buracos negros durante supernovas, esta explosão curta é semelhante àquelas que se espera que sejam observadas quando estrelas de nêutrons se fundem.

READ  Os cientistas calcularam a probabilidade de outra pandemia no nível de COVID

Os dados direcionais do Integral GRB 231115A colocaram-no diretamente acima de uma galáxia próxima, M82, também conhecida como Galáxia do Charuto. M82 é a chamada galáxia starburst, o que significa que está formando estrelas rapidamente, e a explosão é provavelmente causada por interações com seus vizinhos. No geral, a galáxia está formando estrelas a uma taxa 10 vezes maior que a taxa de formação de estrelas da Via Láctea. Isto significa muitas supernovas, mas também significa um grande número de jovens estrelas de nêutrons, algumas das quais formarão magnetares.

Isto não exclui a possibilidade de M82 estar presente antes de uma explosão de raios gama de um evento distante. No entanto, os investigadores estão a utilizar dois métodos diferentes para mostrar que isto é altamente improvável, tornando algo que ocorre dentro da galáxia a fonte mais provável dos raios gama.

Ainda poderia ser uma explosão de raios gama ocorrendo dentro de M82, exceto que a energia total estimada da explosão é muito menor do que esperaríamos desses eventos. As supernovas também deveriam ser detectadas em outros comprimentos de onda, mas não havia sinal de nenhuma (de qualquer maneira, elas geralmente produzem explosões mais longas). Uma fonte alternativa, a fusão de dois objetos compactos, como estrelas de nêutrons, poderia ter sido detectada usando observatórios de ondas gravitacionais, mas não havia nenhum sinal claro neste momento. Estes eventos muitas vezes deixam para trás fontes de raios X, mas nenhuma nova é visível em M82.

Portanto, parece uma explosão magnética gigante, e possíveis explicações para uma curta explosão de radiação gama não funcionam realmente para GRB 231115A.

READ  NASA está mapeando tempestades de poeira do espaço com este novo instrumento de alta tecnologia

Procurando por mais

O mecanismo exato pelo qual os magnetares produzem raios gama não foi totalmente determinado. Pensa-se que este processo envolve um rearranjo da crosta da estrela de neutrões, imposto pelas intensas forças geradas pelo campo magnético surpreendentemente intenso. Acredita-se que as explosões gigantes exigem uma intensidade de campo magnético de pelo menos 1015 Gauss. O campo magnético da Terra é inferior a um gauss.

Assumindo que o evento enviou radiação em todas as direções, em vez de direcioná-la para a Terra, os pesquisadores estimam que a energia total liberada foi de 1045 ergs, o que se traduz em aproximadamente 1022 Megatoneladas de TNT. Portanto, embora seja menos ativo do que uma fusão de estrelas de nêutrons, ainda é um evento impressionantemente ativo.

No entanto, para compreendê-los melhor, provavelmente precisaremos de mais do que os três estados na nossa vizinhança imediata que estão claramente associados aos magnetares. Assim, ser capaz de determinar de forma consistente quando estes eventos ocorrem em galáxias distantes seria uma grande vitória para os astrónomos. Os resultados podem ajudar-nos a desenvolver um modelo para distinguir quando olhamos para uma explosão gigante em vez de fontes alternativas de raios gama.

Os investigadores também observam que esta é a segunda candidata a erupção gigante associada à M82 e, como mencionado acima, espera-se que as galáxias estelares sejam relativamente ricas em magnetares. Concentrar as pesquisas nelas e em galáxias semelhantes pode ser exatamente o que precisamos para acelerar o ritmo das nossas observações.

Natureza, 2024. DOI: 10.1038/s41586-024-07285-4 (Sobre IDs digitais).

Continue Reading

science

Missão Starlink terça-feira de Cabo Canaveral

Published

on

Missão Starlink terça-feira de Cabo Canaveral

READ  Os cientistas calcularam a probabilidade de outra pandemia no nível de COVID
Continue Reading

science

Cientistas descobriram uma chave para desvendar o mistério das doenças cerebrais degenerativas, como a doença de Alzheimer

Published

on

Cientistas descobriram uma chave para desvendar o mistério das doenças cerebrais degenerativas, como a doença de Alzheimer

O desenvolvimento do NeuM, uma nova tecnologia de marcação neuronal, representa um grande passo em frente na luta contra as doenças neurodegenerativas. Ao permitir a marcação seletiva e imagens de alta resolução das membranas neuronais, o NeuM facilita o estudo detalhado das estruturas neuronais e suas alterações ao longo do tempo. Esta tecnologia promete ser um trunfo vital na compreensão e desenvolvimento de tratamentos para doenças como a doença de Alzheimer, oferecendo esperança para avanços na investigação e tratamento de doenças neurodegenerativas. Crédito: SciTechDaily.com

Os cientistas desenvolveram o NeuM, uma técnica de marcação neuronal que permite o monitoramento detalhado da estrutura neuronal. Monitoramento bem sucedido de alterações neurológicas por até 72 horas.

doença de Alzheimer A doença de Parkinson, a doença de Parkinson e o acidente vascular cerebral são a principal tríade de doenças neurodegenerativas. Esses distúrbios são caracterizados pela disfunção e deterioração progressiva das células nervosas, neurônios. Para compreender os mecanismos subjacentes a estas condições neurológicas e formular tratamentos, é essencial ter técnicas de rotulagem que permitam a visualização de alterações neuronais em condições saudáveis ​​e patológicas.

Uma equipe de pesquisa liderada pelo Dr. Kim Yeon-kyung do Brain Science Institute do Instituto Coreano de Ciência e Tecnologia (Kist, em colaboração com a equipe do professor Zhang Yong-tai da Universidade de Ciência e Tecnologia de Pohang, anunciou o desenvolvimento de uma tecnologia de rotulagem neuronal de próxima geração chamada NeuM. NeuM (membranas neuronais seletivas) rotula seletivamente as membranas neuronais, visualizando estruturas neuronais e permitindo o monitoramento em tempo real das alterações neuronais.

Pesquisadores da equipe do Dr. Kim Yun-kyung no KIST

Pesquisadores da equipe do Dr. Kim Yun-kyung no KIST estão usando a tecnologia de rotulagem neuronal de próxima geração, NeuM, para visualizar neurônios em tempo real e examinar imagens de alta resolução. Crédito: Instituto Coreano de Ciência e Tecnologia

Os neurônios modificam continuamente sua estrutura e função para transmitir informações dos órgãos sensoriais ao cérebro e organizar pensamentos, memórias e comportamentos. Portanto, para superar as doenças neurodegenerativas, é necessário desenvolver técnicas que rotulem seletivamente os neurônios vivos para monitoramento em tempo real. No entanto, as atuais técnicas de marcação baseadas em genes e anticorpos, que são comumente usadas para monitorar neurônios, sofrem declínio Precisão O rastreamento a longo prazo é difícil devido à sua dependência da expressão genética ou de proteínas específicas.

READ  Um monstro marinho da era dos dinossauros é encontrado em uma remota ilha ártica

Vantagens e capacidades do NeuM

NeuM, desenvolvido pela equipe de pesquisa por meio do design molecular de neurônios, tem excelente afinidade com membranas neuronais, permitindo rastreamento de longo prazo e imagens de alta resolução de neurônios. Sensores fluorescentes dentro do NeuM se ligam a membranas neuronais usando atividade de células vivas e emitem sinais fluorescentes após excitação por comprimentos de onda específicos de luz. Esta visualização das membranas celulares neuronais permite a observação detalhada das estruturas dos terminais nervosos e o monitoramento de alta resolução da diferenciação e interações neuronais.

Design molecular para marcação seletiva de membranas neuronais

Design molecular para marcação seletiva de membranas neuronais. Crédito: Instituto Coreano de Ciência e Tecnologia

NeuM, como a primeira tecnologia a corar membranas celulares através de endocitose em neurônios vivos, mostra reatividade seletiva em relação a células vivas, excluindo células mortas sem internalização. Além disso, a equipa de investigação conseguiu alargar o tempo de monitorização dos neurónios de apenas 6 horas para 72 horas, permitindo que mudanças dinâmicas em neurónios vivos fossem capturadas durante um período prolongado em resposta a mudanças ambientais.

Espera-se que o NeuM forneça informações sobre pesquisa e desenvolvimento de tratamentos para doenças neurodegenerativas, para as quais atualmente não há cura. Estas doenças, incluindo a doença de Alzheimer, resultam de danos nas células nervosas devido à produção de proteínas tóxicas, como a amilóide, e ao influxo de substâncias inflamatórias. O monitoramento atento do NeuM quanto a alterações neurológicas pode efetivamente facilitar a avaliação de compostos terapêuticos candidatos.

“O NeuM, que foi desenvolvido desta vez, pode distinguir entre envelhecimento e degeneração de neurônios, tornando-se uma ferramenta crucial na elucidação dos mecanismos de distúrbios cerebrais degenerativos e no desenvolvimento de tratamentos”, disse o Dr. Ele também acrescentou: “No futuro, planejamos melhorar o NeuM para uma análise mais precisa dos neurônios, projetando comprimentos de onda fluorescentes para distinguir cores como verde e vermelho”.

READ  A SpaceX está prestes a lançar sua próxima série de satélites Starlink - Spaceflight Now

Referência: “NeuM: uma sonda seletiva de neurônios incorporada em membranas neuronais vivas por meio de endocitose aprimorada mediada por clatrina em neurônios primários” por Yoonsik Song, Lizaveta Gotina, Kyu-Hyun Kim, Jung-Yul Lee, Solji Shin, Hira Aziz, Dong- Min Kang, Xiao 7 de dezembro de 2023, 7 de dezembro de 2023 Angewandte Chemie Edição Internacional.
doi: 10.1002/anie.202312942

Esta pesquisa foi apoiada pelo Ministério da Ciência e TIC (Ministro Lee Jung-ho) por meio dos Principais Projetos KIST e do Projeto Superando a Demência (RS-2023-00261784).

Continue Reading

Trending

Copyright © 2023