Connect with us

science

A nova onda de ondas gravitacionais | espaço

Published

on

A nova onda de ondas gravitacionais |  espaço

umaCerca de 10 bilhões de trilhões de trilhões de milissegundos No início da criação no Big Bang, acredita-se que o universo experimentou um surto de crescimento curto, mas absurdamente rápido. Esse evento, chamado de inflação, foi tão catastrófico que o tecido do espaço e do tempo se sintonizou com as ondas gravitacionais (GWs). Em comparação, os GWs que foram descobertos pela primeira vez há seis anos estavam causando um grande estrondo, que eram minúsculos casos de buracos negros em colisão. Mas agora os cientistas estão na Europa espaço A ESA tem como objetivo objetivos maiores – e espera em breve ser capaz de detectar os ecos tênues das dores inflacionárias do nascimento do universo, cerca de 14 bilhões de anos após o evento, usando o maior instrumento já feito. Centenas de vezes maior que a Terra, o detector de ondas gravitacionais planejado de Esa flutuará no espaço e procurará oscilações no espaço-tempo causadas por todos os tipos de convulsões astrofísicas massivas.

O primeiro GW foi identificado em 2015 pelo Laser Interferometer Gravitational Wave Observatory (Ligo), um projeto internacional cujo sucesso rendeu o Prêmio Nobel de Física 2017 a três de seus principais proponentes. O Ligo consiste em dois grandes detectores nos estados americanos de Washington e Louisiana. Cada um deles implanta dois túneis de 2,5 milhas (4 quilômetros), que se cruzam em um ângulo reto, nos quais o feixe de laser viaja ao longo do espelho na extremidade oposta e depois volta para trás. As ondas de luz que retornam interferem umas nas outras conforme os braços se cruzam. Quando o GW passa, ele encolhe ligeiramente ou aumenta o espaço-tempo. Como esse efeito será diferente em cada braço, ele altera a sincronização das ondas de luz e, portanto, altera a interferência dos dois feixes.

LEGO não está sozinho. Uma segunda descoberta do GW no dia de Natal de 2015 foi posteriormente confirmada em colaboração com o detector europeu Virgo, com sede na Itália. Um detector no Japão, chamado Kagra, começou a operar no início do ano passado, e outros dispositivos estão planejados na Índia e na China.

A maioria dos buracos negros vistos até agora parecem ser causados ​​pela colisão de dois buracos negros. Essas estrelas são compostas de estrelas muitas vezes mais massivas que o nosso Sol, que queimaram e entraram em colapso sob a influência de sua própria gravidade. De acordo com a teoria geral da relatividade de Albert Einstein, que descreve a gravidade como a distorção do espaço-tempo causada pela massa, o colapso pode continuar até que nada permaneça além de uma “singularidade” muito densa, que produz um campo gravitacional tão intenso que nem mesmo a luz pode escapar. dele.

A colisão de dois buracos negros – um evento detectado pela primeira vez pelo Observatório de Ondas Gravitacionais a Laser, ou Ligo – é mostrada nesta imagem estática de uma simulação de computador. Foto: SXSproject

Se dois buracos negros colidirem devido à atração gravitacional um do outro, eles podem orbitar um ao outro e diminuir gradualmente para dentro até que se unam. A relatividade geral previu há mais de um século que tais eventos enviariam ondas GW através do universo, embora não houvesse evidência direta para eles até a descoberta do LIGO. Eles também podem ser causados ​​por outros fenômenos astrofísicos extremos, como fusões de estrelas de nêutrons: estrelas em chamas menos massivas que buracos negros que interromperam seu colapso no ponto em que consistem em matéria tão densa que o dedal de uma pessoa pesa até 50 m elefante.

READ  Asteroide com o dobro do tamanho da Estátua da Liberdade passa pela Terra em 'aproximação próxima'

GW também pode ser produzido por objetos muito maiores. No centro da nossa galáxia, e de muitas outras galáxias, está um buraco negro supermassivo vários milhões de vezes a massa do nosso Sol, formado a partir do colapso de estrelas e nuvens de gás e poeira cósmica. Objetos ondulando nesses buracos negros supermassivos geram GWs que oscilam em frequências mais baixas e comprimentos de onda mais longos do que as ondas de fusão dos minúsculos buracos negros vistas por Ligo e Virgo.

Os detectores baseados em terra não conseguem localizar essas coisas – seria como tentar capturar uma baleia em uma tigela de lagosta. Para vê-los, o detector de interferometria precisaria de braços muito mais longos. Isso é complicado, pois cada braço do canal deve ser longo, reto e livre de qualquer vibração. Então, os pesquisadores planejam fazer gyots de baixa frequência no espaço. O mais avançado desses planos é o dispositivo que agora está sendo construído para a Esa: a: Interferômetro de laser de antena espacial (Lisa).

O LISA enviará lasers de uma espaçonave para ricochetear em um espelho que flutua livremente dentro de outra espaçonave. Usando três espaçonaves, você pode criar uma estrutura em forma de L de braço duplo como o Ligo. Mas os braços não precisam estar em ângulos retos: em vez disso, Lisa posicionará suas três espaçonaves a vários milhões de quilômetros de distância nos cantos do triângulo, com cada canto se tornando um dos três detectores. Todo o grupo seguirá a órbita da Terra, seguindo nosso planeta por cerca de 30 metros.

Para testar a viabilidade da realização de interferometria a laser no espaço, em 2015 a Esa lançou um projeto piloto denominado Lisa Pathfinder – A nave espacial demonstrou tecnologia em pequena escala. a missão, Concluído em 2017, ele “nos surpreendeu”, diz Issa Paul McNamara, que foi o cientista do projeto que comandou a missão. “Cumpriu nossos requisitos no primeiro dia, sem modificação ou nada.” Ele mostrou que um espelho flutuando dentro de uma espaçonave pode permanecer incrivelmente estacionário, oscilando por não mais que um milésimo do tamanho de um único átomo. Para mantê-lo estável, a espaçonave usa pequenos propulsores para responder à força da luz que vem do sol.

Em outras palavras, McNamara diz: “Nossa espaçonave era mais estável do que o tamanho do coronavírus.” E é, também, porque o LISA precisaria detectar uma mudança no comprimento do braço que, devido ao GW, é um décimo da largura de um átomo em um milhão de milhas.

READ  As bactérias podem armazenar memórias e transmiti-las por gerações: ScienceAlert

No entanto, o lançamento de Lisa não acontecerá por pelo menos uma década. “Temos que construir três satélites e cada um deles tem muitas partes”, diz McNamara. “Leva tempo – e esse é um dos fatos infelizes de uma tarefa muito complexa.” O próximo marco é a “adoção oficial da missão”, prevista para 2024. “Neste ponto, saberemos os detalhes da missão e quais países membros da ESA e os Estados Unidos contribuem com o quê e quanto custa, “diz o astrofísico Emmanuel Berti, da Jones University. Hopkins em Baltimore.

O Japão e a China também estão nos estágios iniciais de planejamento de detectores espaciais GW. McNamara vê isso não como uma competição, mas como uma coisa boa – porque com mais de um detector seria possível usar a triangulação para determinar a origem das ondas.

“Lisa mudará a astronomia GW da mesma forma que transcende a luz visível [to radio waves, X-rays etc] Foi uma virada de jogo na astronomia comum ”, diz Bertie.“ Ele estará olhando para diferentes classes de fontes de GW. ”Ao estudar fusões de buracos negros supermassivos, diz ele,“ esperamos entender muito sobre a formação da estrutura em o universo, e sobre a própria gravidade. ”Lisa já tinha visto GWs” primitivos “da inflação no início do Big Bang, então isso pode testar teorias sobre como tudo começou.


TEsta pode ser outra maneira de ver GWs de baixa frequência que não requerem um detector específico. Uma colaboração chamada North American Nanohertz Gravitational Wave Observatory (NanoGrav) usa observações feitas por uma rede global de radiotelescópios para pesquisar o efeito dos GWs no tempo de “relógios cósmicos” chamados pulsares.

Os pulsares orbitam rapidamente em torno de estrelas de nêutrons que enviam feixes intensos de ondas de rádio de seus pólos, varrendo o céu como os raios de um farol. Os sinais do pulsar são muito regulares e previsíveis. “Se um GW passa entre o pulsar e a Terra, ele distorce o espaço-tempo sobreposto”, diz Stephen Taylor, membro da equipe do NanoGrav, da Universidade Vanderbilt, no Tennessee, fazendo com que o pulso chegue mais cedo ou mais tarde do que o esperado.

Green Bank Telescope (GBT)
The Green Bank Telescope (GBT) no National Radio Astronomy Observatory na Virgínia, parte do projeto NanoGrav. Fotografia: John Arnold Images Ltd / Almy

Na verdade, os pulsares tornam-se detectores. Como disse Julie Comerford, membro da equipe do NanoGrav, da Universidade do Colorado em Boulder, isso dá ao “detector” braços tão longos quanto a distância entre a Terra e os pulsares: talvez milhares de anos-luz. Por causa desse tamanho, os sinais que podem ser detectados pelo NanoGrav têm comprimentos de onda muito longos e frequências muito baixas, mesmo além do alcance de LISA e produzidos por buracos negros supermassivos bilhões de vezes maiores que o Sol, que se fundem quando galáxias inteiras colidem . Taylor diz que nenhum outro detector pode sentir isso. Embora inimaginavelmente desastrosas, essas integrações são bastante comuns, e o NanoGrav terá o tipo de campanha publicitária que muitos deles fizeram. “Em todo o universo, existem pares de buracos negros supermassivos orbitando uns aos outros e produzindo gigawatts”, diz Commerford. “Essas ondas produzem um mar de GWs que estamos balançando.”

READ  NASA lança a missão Artemis 1 na lua a partir da plataforma de lançamento (fotos)

Em janeiro, a equipe do NanoGrav foi liderada pelo pesquisador de pós-doutorado de Comerford, Joseph Simon, no Colorado Relate a primeira descoberta possível deste fundo GW. Embora mais trabalho seja necessário para verificar se o sinal é realmente causado por GWs, Commerford chama o resultado de “o resultado astrofísico mais empolgante que vi nos últimos anos”.

Se o NanoGrav está, de fato, usando um detector GW com o tamanho de anos-luz, o físico Sougato Bose, da University College London, acha que podemos fazer um pequeno o suficiente para caber dentro de um armário. Sua ideia é baseada em um dos efeitos mais incomuns da teoria quântica, que geralmente descreve objetos muito pequenos, como átomos. Os objetos quânticos podem ser colocados no que é chamado de superposição, o que significa que suas propriedades não são exclusivamente determinadas até que sejam medidas: mais de um resultado é possível.

Os cientistas quânticos podem rotineiramente colocar átomos em uma superposição quântica – mas esse comportamento estranho desaparece para objetos grandes como bolas de futebol, que estão aqui ou ali, quer olhemos ou não. Pelo que sabemos, não é que a superposição seja impossível para algo tão grande – é impossível mantê-la por tempo suficiente para ser detectada, porque a superposição é facilmente destruída por qualquer interação com os arredores do objeto.

Sougato Bose, físico da University College London, está liderando uma equipe de pesquisadores que planeja chegar experimentalmente à gravidade quântica.
Sougato Bose, físico da University College London, está liderando uma equipe de pesquisadores que planeja chegar experimentalmente à gravidade quântica. Foto: Cortesia de Sougato Bose

Bose e colegas sugerem que se pudéssemos criar uma superposição quântica de um objeto de tamanho médio entre um átomo e uma bola de futebol – um pequeno cristal com cerca de cem nanômetros de diâmetro, do tamanho de uma grande partícula viral – a superposição seria tão arriscada que seria sensível a um GW transitório. Na verdade, os dois estados potenciais de superposição quântica podem se sobrepor como duas ondas de luz – e as distorções espaço-temporais induzidas por GW apareceriam como uma mudança nessa interferência.

Bose acredita que os nanocristais de diamante que são mantidos em um vazio mais do que o espaço sideral e resfriados dentro de um filamento de zero absoluto podem ser mantidos em superposição por tempo suficiente para fazer o truque. Não será fácil, mas ele diz que todos os desafios técnicos já são apresentados individualmente – é uma questão de colocá-los todos juntos. “Não vejo impedimento para fazer isso nos próximos 10 anos ou mais, se houver financiamento suficiente”, diz ele.

Se esses e outros desenvolvimentos levarem a um boom na astronomia GW, o que veremos? “Quando você abre uma nova janela no universo, geralmente vê coisas que não esperava”, diz McNamara. Além de ver mais tipos de eventos que já sabemos que causam GWs, podemos receber sinais que não podemos explicar facilmente. “É aí que a diversão começa”, diz McNamara.

Continue Reading
Click to comment

Leave a Reply

O seu endereço de e-mail não será publicado. Campos obrigatórios são marcados com *

science

A NASA está perto de decidir o que fazer com a problemática espaçonave Starliner da Boeing

Published

on

A NASA está perto de decidir o que fazer com a problemática espaçonave Starliner da Boeing
Mais Zoom / A espaçonave Strainer da Boeing é vista acoplada à Estação Espacial Internacional nesta foto tirada em 3 de julho.

Os astronautas que viajaram na espaçonave Starliner da Boeing até a Estação Espacial Internacional no mês passado ainda não sabem quando retornarão à Terra.

Os astronautas Butch Wilmore e Sonny Williams estiveram no espaço por 51 dias, seis semanas a mais do que o planejado originalmente, como engenheiros na Terra para resolver problemas com o sistema de propulsão do Starliner.

Os problemas são duplos. Os motores de propulsão que controlam a resposta da espaçonave superaqueceram e alguns deles pararam de funcionar quando a espaçonave se aproximou da Estação Espacial Internacional em 6 de junho. Uma questão separada, embora talvez relacionada, diz respeito a um vazamento de hélio no sistema de propulsão do veículo.

Os gerentes da NASA e da Boeing disseram na quinta-feira que ainda planejam trazer Willmore e Williams para casa a bordo da espaçonave Starliner. Nas últimas semanas, as equipes de solo concluíram os testes dos propulsores em uma bancada de testes em White Sands, Novo México. Neste fim de semana, a Boeing e a NASA planejam lançar os propulsores da espaçonave em órbita para verificar seu desempenho durante a acoplagem à estação espacial.

“Acho que estamos começando a nos aproximar das justificativas finais do voo para garantir que possamos voltar para casa com segurança, e esse é nosso foco principal agora”, disse Stitch.

Os problemas levaram à especulação de que a NASA pode decidir devolver Wilmore e Williams à Terra em uma espaçonave SpaceX Crew Dragon. Há um veículo Crew Dragon atualmente atracado na estação, e outro com uma nova tripulação está programado para ser lançado no próximo mês. Steve Stich, diretor do Programa de Tripulação Comercial da NASA, disse que a agência considerou planos alternativos para trazer a tripulação do Starliner para casa a bordo de uma cápsula da SpaceX, mas o foco principal continua sendo o retorno dos astronautas para casa a bordo do Starliner.

READ  Hubble captura as tempestades estrondosas do gigante e a lua vulcânica Io

“Nossa principal escolha é completar a missão. Há muitos bons motivos para completar esta missão e trazer Butch e Sonny para casa no Starliner. O Starliner foi projetado como uma espaçonave com a tripulação na cabine”, disse Stitch.

A espaçonave Starliner decolou da Estação Espacial de Cabo Canaveral, na Flórida, em 5 de junho. Willmauer e Williams são os primeiros astronautas a voar para o espaço a bordo de uma cápsula de tripulação comercial da Boeing, e este voo de teste visa preparar o caminho para futuros voos operacionais para rotacionar tripulações de quatro pessoas de e para a Estação Espacial Internacional.

Assim que a NASA certificar totalmente o veículo Starliner para missões operacionais, a agência terá duas espaçonaves qualificadas para transportar humanos até a estação. O veículo Crew Dragon da SpaceX transporta astronautas desde 2020.

Testes, testes e mais testes

A NASA estendeu a duração do voo de teste do Starliner para realizar testes e analisar dados em um esforço para ganhar confiança na capacidade da espaçonave de trazer sua tripulação para casa com segurança e compreender melhor as causas do superaquecimento do motor e do vazamento de hélio. Esses problemas estão alojados dentro do módulo de serviço do Starliner, que é descartado para queimar na atmosfera durante a reentrada, enquanto o módulo reutilizável da tripulação, com os astronautas dentro, salta de pára-quedas para um pouso almofadado de ar.

O mais importante desses testes foi uma série de testes do míssil Starliner em solo. Este foguete foi retirado de um grupo de dispositivos programados para serem lançados em uma futura missão Starlink, e os engenheiros o submeteram a um teste de estresse, disparando-o várias vezes para replicar a sequência de pulsos que veria durante o vôo. O teste simulou duas sequências de sobrevôo até a estação espacial e cinco sequências que o foguete realizaria durante a separação e queima de saída de órbita para retornar à Terra.

READ  5,3 milhões de frangos mortos em Iowa devido a surto de gripe aviária

“Este propulsor tinha muitas pulsações, provavelmente mais do que esperaríamos ver durante o voo, e mais agressivo em termos de duas subidas e cinco descidas”, disse Stitch. “O que vimos no propulsor é o mesmo tipo de degradação do empuxo que vemos em órbita. Em vários propulsores (a bordo do Starliner), vemos uma redução no empuxo, o que é significativo.”

Os computadores de vôo Starliner desligaram cinco dos 28 propulsores do Sistema de Controle de Reação da Aerojet Rocketdyne durante seu encontro com a Estação Espacial Internacional no mês passado. Quatro dos cinco motores foram recuperados após superaquecimento e perda de propulsão, mas as autoridades declararam um dos motores inutilizável.

Os motores de impulso testados na Terra mostraram comportamento semelhante. Inspeções de propulsores em White Sands mostraram uma protuberância em uma vedação de Teflon em uma válvula oxidante, o que poderia restringir o fluxo de combustível tetróxido de nitrogênio. Os propulsores, cada um gerando cerca de 85 libras de empuxo, consomem oxidante de tetróxido de nitrogênio, ou NTO, e o misturam com combustível hidrazina para combustão.

A válvula de gatilho, que é semelhante à válvula de enchimento de um pneu, é projetada para abrir e fechar para permitir que o tetróxido de nitrogênio flua para o impulsor.

“Esta luva tem uma vedação de Teflon na extremidade. Devido ao aquecimento e ao vácuo natural que ocorre com o acionamento do propulsor, esta luva deformou-se e inchou ligeiramente”, disse Nappi.

Os engenheiros estão avaliando a integridade do selo de Teflon para determinar se ele pode permanecer intacto durante o processo de separação e de órbita da espaçonave Starliner, disse Stitch. Nenhum propulsor é necessário enquanto o Starliner estiver conectado à estação espacial.

READ  Um tipo de sinal nunca visto antes foi descoberto no cérebro humano

“Esta foca sobreviverá ao resto da viagem? Essa é a parte importante”, disse Stitch.

Continue Reading

science

As nozes são boas para você?

Published

on

As nozes são boas para você?

Graças à sua promoção frequente nas redes sociais, as nozes ganharam grande popularidade nos últimos anos. Embora pouco mais de 160.000 toneladas de nozes sejam produzidas nos Estados Unidos, isso representa 10% da produção global total. Exportado globalmente Em 2010, esse número atingiu 324.700 até o final de 2021. Agora, o mercado global de nozes atingiu US$ 8,8 bilhões, Para cada análiseEspera-se que aumente para mais de US$ 11 bilhões até o final da década.

Embora não haja como negar o sabor doce, o sabor único ou a satisfação da noz, muitas pessoas não estão cientes de seu valor nutricional ou de quantos pratos a noz é comumente incluída. “As nozes são versáteis e podem ser consumidas cruas em grandes quantidades, polvilhadas em saladas, cereais e aveia, sendo comumente utilizadas em diversos pratos. assados “Receitas”, diz ele Roxana E.HEnsolaradonutricionista registrada e nutricionista esportiva certificada.

Continue Reading

science

Cientistas descobrem “oxigênio escuro” que é produzido sem luz nas profundezas do oceano

Published

on

Cientistas encontraram evidências de que minerais naturais Pode ser possível produzi-lo no fundo do oceano Oxigénio – um “potencial divisor de águas” que, segundo eles, poderia mudar a nossa compreensão das origens da vida na Terra.

Pesquisadores que Estádio Um estudo publicado segunda-feira na revista Nature Geoscience descobriu que Através de um processo recém-descoberto, Pedaços compostos de minerais como manganês e ferro, muitas vezes Esses blocos são usados ​​para fazer baterias e podem produzir oxigênio mesmo na escuridão total. Os organismos vivos normalmente precisam de luz para produzir oxigênio através de um processo conhecido como fotossíntese, mas os pesquisadores acreditam que a atividade eletroquímica produzida por esses blocos… Eles são chamados de nódulos poliminerais – podem extrair oxigênio da água. Os blocos formados acima Milhões de anos Pode ser do tamanho de uma batata.

Bo Parker Jorgensen, especialista em bioquímica marinha que não esteve envolvido na pesquisa, mas revisou o estudo, disse numa entrevista que esta é uma “descoberta muito incomum”.

Estas descobertas podem ter implicações para a indústria mineira em águas profundas, cujos intervenientes têm procurado permitir-lhes explorar as profundezas do oceano e extrair minerais como os que constituem os nódulos polimetálicos. Eles são vistos como cruciais para a transição para a energia verde. Ativistas ambientais e muitos mais Cientistas Acredita A mineração em alto mar é perigosa Porque podem desestabilizar os ecossistemas de formas inesperadas e podem afectar a capacidade do oceano de ajudar a conter as alterações climáticas. O estudo recebeu financiamento de empresas que atuam na área de exploração mineira de fundos marinhos.

Quando Andrew Sweetman, principal autor do estudo, registrou pela primeira vez leituras incomuns de oxigênio provenientes do fundo do Oceano Pacífico em 2013, ele pensou que seu equipamento de pesquisa estava com defeito.

READ  Asteroide com o dobro do tamanho da Estátua da Liberdade passa pela Terra em 'aproximação próxima'

“Eu basicamente disse aos meus alunos: 'Basta colocar os sensores na caixa. Vamos levá-los de volta ao fabricante e testá-los porque eles estão nos dando lixo'”, disse Sweetman, chefe do grupo de pesquisa em ecologia e biogeoquímica do fundo do mar. na Sociedade Escocesa de Ciências Marinhas. Ele disse à CNN“E toda vez que a fábrica volta ele diz: 'Eles estão funcionando, estão calibrados'.

Em 2021 e 2022, Sweetman e sua equipe retornaram à Zona Clarion-Clipperton, uma área abaixo do Oceano Pacífico central conhecida por ter grandes quantidades de nódulos polimetálicos. Confiantes de que os seus sensores estavam a funcionar, baixaram um dispositivo a mais de 4.000 metros abaixo da superfície para colocar pequenas caixas no sedimento. As caixas permaneceram no local por 47 horas, para a realização de experimentos e medição dos níveis de oxigênio consumido pelos microrganismos que ali vivem.

Em vez de os níveis de oxigénio caírem, eles subiram – indicando que a quantidade de oxigénio produzida é maior do que a quantidade de oxigénio consumida.

Os pesquisadores levantaram a hipótese de que era a atividade eletroquímica dos diferentes minerais que formam os nódulos polimetálicos. Os neurônios no cérebro foram responsáveis ​​pela produção de oxigênio que foi medido por sensores – como uma bateria na qual os elétrons fluem de um eletrodo para outro, criando uma corrente elétrica, disse Tobias Hahn, um dos participantes do estudo, em uma entrevista.

Esta hipótese acrescentaria uma camada à nossa compreensão de como existem os organismos submarinos, disse Hahn, que se concentrou especificamente nos sensores utilizados nas experiências do estudo. Ele acrescentou: “Acreditávamos que a vida começou na Terra quando a fotossíntese começou, quando o oxigênio foi trazido para a Terra através da fotossíntese. É possível que esse processo de divisão eletroquímica da água em oxigênio e hidrogênio seja o que forneceu oxigênio ao oceano.”

READ  Hubble captura as tempestades estrondosas do gigante e a lua vulcânica Io

“Esta pode ser uma mudança na história sobre como a vida começa”, acrescentou.

a Comunicado de imprensa sobre o estudo O estudo disse que suas descobertas desafiam “suposições de longa data de que apenas organismos capazes de fotossíntese, como plantas e algas, geram oxigênio na Terra”.

Mas se a descoberta for confirmada, “precisamos de repensar a forma como extraímos” materiais como cobalto, níquel, cobre, lítio e manganês debaixo de água, “para não esgotar a fonte de oxigénio para a vida no fundo do mar”, disse Franz Geiger. um professor de química da Northwestern University e um dos participantes do estudo, no comunicado.

A mineração submarina na década de 1980 serve como um alerta, diz Geiger. Quando biólogos marinhos visitaram esses locais décadas mais tarde, “descobriram que as bactérias nem sequer se tinham recuperado”. Mas em áreas onde não havia mineração, “a vida marinha floresceu”.

“A razão pela qual estas ‘zonas mortas’ persistem durante décadas ainda é desconhecida”, disse ele. Mas o facto de existirem sugere que a extracção de minerais do fundo do mar em áreas com muitos nódulos polimetálicos pode ser particularmente prejudicial, porque estas áreas tendem a ter maior diversidade animal do que “florestas tropicais mais diversificadas”, disse ele.

Embora o estudo aponte para um novo caminho interessante para sustentar a vida nas profundezas do oceano, muitas questões ainda permanecem, disse Hahn. Ele acrescentou: “Não sabemos quanto ‘oxigênio escuro’ pode ser criado através deste processo, como isso afeta os nódulos poliminerais ou quais quantidades de nódulos são necessárias para permitir a produção de oxigênio”.

Embora a metodologia do estudo seja sólida, “o que falta é entender o que está acontecendo, que tipo de processo é esse”, disse Parker Jorgensen.

READ  NASA lança a missão Artemis 1 na lua a partir da plataforma de lançamento (fotos)
Continue Reading

Trending

Copyright © 2023