Connect with us

science

O que está por trás do derretimento das geleiras e do degelo do permafrost? Metais preciosos, combustíveis fósseis e micróbios mortais

Published

on

O que está por trás do derretimento das geleiras e do degelo do permafrost?  Metais preciosos, combustíveis fósseis e micróbios mortais

A neve está derretendo em um ritmo alarmante em todo o mundo. Seja no topo das montanhas, nos pólos, nos mares ou na tundra, nenhum lugar está imune. O derretimento do gelo revela novos terrenos, bem como oportunidades e perigos emocionantes, como depósitos minerais valiosos, artefatos antigos e até mesmo vírus desconhecidos. Esta situação merece atenção imediata, enquanto navegamos no território desconhecido que fica sob o gelo derretido.

Em todo o planeta, o gelo está desaparecendo rapidamente. De picos de montanhas, pólos, mares e tundras. À medida que o gelo derrete, ele revela novas superfícies, novas oportunidades e novas ameaças, incluindo valiosos depósitos minerais, vestígios arqueológicos, novos vírus e muito mais.

Derretimento de geleiras e gelo marinho

O Ártico está aquecendo quatro vezes mais rápido que o resto do planeta, o que significa que as geleiras terrestres e o gelo marinho, que flutua na superfície do oceano, estão derretendo rapidamente. Dois terços do gelo marinho do Ártico desapareceram desde 1958, quando foi medido pela primeira vez. Entre 2000 e 2019, as geleiras do mundo perderam 267 bilhões de toneladas de gelo por ano. As geleiras do Himalaia estão prestes a perder um terço de seu gelo até 2100, e as geleiras alpinas devem perder metade de seu gelo.

calota de gelo da Groenlândia

Calota de gelo da Groenlândia. Crédito: Doc Searls

Bound, disse Jörg Schaeffer, um geoquímico climático do Observatório da Terra Lamont-Doherty da Columbia School of Climate, que pesquisa o gelo na Groenlândia. “Todas as previsões são muito conservadoras em termos de mudança – a mudança será muito mais rápida. Isso é verdade globalmente. Mas a Groenlândia pode ser uma das regiões onde essas previsões de mudança de gelo são muito conservadoras devido a uma variedade de fatores climáticos.”

Devido ao aquecimento global já causado pela atividade humana, o derretimento da Groenlândia elevará o nível do mar em 10,6 polegadas, de acordo com um estudo recente publicado na revista

Coastal Flooding Thailand

Some places, like Thailand, are already experiencing coastal flooding. Credit: Photo by Brigitte Leoni / UNISDR

The resulting potential sea level rise would spell disaster for the 680 million people who live in low-lying coastal areas around the world, a number expected to top one billion by 2050.

What lies under melting ice?

Fossil fuels and precious metals

Until recently, most exploitation of the Arctic’s oil and gas resources were on land. But summer ice cover in the Arctic could disappear as early as 2035, making the region more accessible to ships and providing new opportunities for fossil fuel extraction and mining.

The United States Geological Survey has estimated that about 30 percent of the world’s undiscovered gas and 13 percent of the world’s undiscovered oil may be found north of the Arctic Circle, mostly offshore in the ocean. In addition to these fossil fuels, the U.S. Congressional Research Service estimated that the Arctic contains one trillion dollars’ worth of precious metals and minerals.

Greenland has deposits of coal, copper, gold, nickel, cobalt, rare-earth metals, and zinc. As the melting ice uncovers land that has been inaccessible for thousands of years, prospectors are moving in.

Southwestern Tip of Greenland

The southwestern tip of Greenland. Credit: Doc Searles

Schaefer’s research involves sampling underneath Greenland’s ice and using isotope tools to figure out when the area was last ice-free in order to identify the most vulnerable segments of the Greenland ice sheet. He is often questioned by mineral consortiums. “They just want to know what is underneath the ice sheet. ‘Send us your rocks, we need to know what minerals are in there. And when is it gone? Or what does it take to melt it?’ They just want to get into these mineral deposits,” he said.
Valuable metals are also found in the deep seabed in the Arctic and elsewhere. Potato-like nodules on the Arctic Ocean floor contain copper, nickel, and rare earths such as scandium, used in the aerospace industry. Norway is exploring deep-sea mining of the ocean floor to exploit deposits of copper, zinc, cobalt, gold, and silver. The International Seabed Authority has already approved 30 contracts for seabed exploration.

Mining the ocean floor could cause serious harm to marine ecosystems, including to the plankton that are the basis of the food chain. And while deep sea mining companies claim their environmental impacts are less than those of land mining, much of the deep sea and its ecosystems remain largely unexplored. Several companies and environmental groups are calling for a global moratorium on deep seabed mining until its environmental impacts are better understood.

Nodules on Sea Floor

Nodules on the sea floor. Credit: Philweb

However, avoiding the worst impacts of climate change means transitioning from fossil fuels to renewable energy, which requires large quantities of minerals. As much as three billion tons of metals — including lithium, nickel, manganese, cobalt, copper, silicon, silver, zinc, iron ore, and aluminum — may be needed for technologies such as batteries for electric vehicles, wind turbines, solar panels, and other clean energy technologies. The World Bank estimates that the production of minerals could increase by nearly 500 percent by 2050 to meet the growing demand for renewable energy technologies.

One ecologically sound alternative to mining the exposed land or deep seabed would be to extract valuable metals from recycled electronic waste, but the reality is that only about 20 percent of e-waste is recycled—the rest is discarded. In any case, more precious metals than are currently in circulation will be needed to supply materials for the transition to clean energy. As a member of the Deep Sea Conservation Coalition said, “You can’t recycle what you don’t have.”

More shipping

Melting sea ice has opened up waterways in the Arctic, enabling shipping to increase by 25 percent between 2013 and 2019.

US Coast Guard Cutter Healy in Beaufort Sea

As a result of melting sea ice in the Arctic, new waterways have emerged, leading to a 25% rise in shipping activity between 2013 and 2019. Credit: NASA/Kathryn Hansen

As more oil tankers and bulk carriers traverse the region, the result has also been an 85 percent increase in black carbon mainly from their use of heavy fuel oil. When black carbon — a form of air pollution that results from the incomplete combustion of fossil fuels — lands on snow or ice, it darkens it and hastens melting. Black carbon also causes respiratory and cardiovascular illnesses in humans. The U.N.’s International Maritime Organization has banned the use of heavy fuel oil in the Arctic, but the ban won’t go into effect until 2029.

With the melting summer ice, cruise tourism is also increasing. In 2016, the first large cruise ship traversed the Arctic and stopped at Nome, AK. This summer, 27 cruise ships were scheduled to dock there. More cruise ships mean more carbon emissions that blacken the ice and disrupt marine ecosystems.

Permafrost Thawing Near the Yukon

Permafrost thawing near the Yukon. Credit: Boris Radosavljevic

Thawing permafrost

Global warming is also causing the thawing of permafrost—ground that remains frozen for two or more consecutive years. It is found at high latitudes and high altitudes, mainly in Siberia, the Tibetan Plateau, Alaska, Northern Canada, Greenland, parts of Scandinavia and Russia. Permafrost, some of which has been frozen for tens or hundreds of thousands of years, stores the carbon-based remains of plants and animals that froze before they could decompose. Scientists estimate that the world’s permafrost holds 1,500 billion tons of carbon, almost double the amount of carbon currently in the atmosphere. As permafrost thaws, the microbes within consume the frozen organic matter and release carbon dioxide and methane into the atmosphere. This accelerates warming, precipitating even more permafrost thaw in an irreversible cycle. Scientists project that two-thirds of the Arctic’s near-surface permafrost could be gone by 2100.

When the ice in permafrost melts, the ground becomes unstable and can slump, causing rock and landslides, floods, and coastal erosion. The buckling earth can damage buildings, roads, power lines, and other infrastructure. It is affecting many Indigenous communities that have lived and depended on the stability of frozen permafrost for hundreds of years.

What lies under thawing permafrost?

Microbes

As permafrost thaws, bacteria and viruses that have been hidden underground for tens of thousands of years are being uncovered. One gram of permafrost was found to harbor thousands of dormant microbe species. Some of these species could be new viruses or ancient ones for which humans lack immunity and cures, or diseases that society has eliminated, such as smallpox or Bubonic plague. In 2016, a hundred people in Siberia were hospitalized and a boy died after contracting anthrax from an infected reindeer carcass that had frozen 75 years earlier and become exposed when the permafrost thawed. Anthrax spores entered the soil and water, and eventually the food supply.

Much older specimens have also been uncovered. Scientists have revived a 30,000-year-old virus that infects amoebas and discovered microbes more than 400,000 years old. Some of these microorganisms may already be resistant to our antibiotics.

Pollutants

Because the Arctic has been covered by ice and permafrost for much of human history and was largely inaccessible, it was an ideal place to dump chemicals, biohazards, and even radioactive materials. The risks these materials pose in the light of thawing permafrost are poorly understood.

Radioactive waste from nuclear reactors and submarines, nuclear testing, and dumped nuclear waste can be exposed by melting ice and thawing permafrost. Chemicals and pollutants, such as DDT and PCBs, that were transported through the atmosphere and frozen in the permafrost, may also resurface. Heavy metal mine waste resulting from decades of extensive mining in the Arctic is found in permafrost as well.

The increased water flow resulting from thawing permafrost will enable pollutants and microorganisms to spread more easily, with potential risks to ecosystems, local communities, and the food chain. The increase in cruise ships, tourism, mining, and commerce in the Arctic could also expose more people to pathogens and pollutants.

Disko Bay Iceberg

Melting ice sheet in Greenland. Credit: NASA/Saskia Madlener

Is there anything positive about melting glaciers and thawing permafrost?

There are many disasters that could result from melting glaciers and thawing permafrost, but there may also be a few potential benefits.

One study found that the new shipping routes opened by melting ice in the Arctic could reduce the travel time between Asia and Europe substantially. The Arctic routes are 30 to 50 percent shorter than the Suez Canal and Panama Canal routes and can cut travel time by 14 to 20 days. Ships will thus be able to reduce their greenhouse gas emissions by 24 percent, while saving money on fuel and ship wear and tear.

New mining opportunities in previously inaccessible areas and in the deep sea will make it possible to obtain the quantities of rare and precious metals needed to transition to a clean energy economy. The chairman of the Metals Company said, “The reality is that the clean-energy transition is not possible without taking billions of tons of metal from the planet.”

The microbes and viruses that have lived in the permafrost for millennia had to develop many adaptations to withstand the harsh environment and may help to develop new antibiotics. To survive, bacteria competed with each other by producing antibiotics, some of which may be entirely new. While some microbes have been found to be antibiotic resistant, others might be able to help develop new antibiotics for medical use. In Arctic soil uncovered by thawing permafrost, scientists discovered new bacteriophages—bacteria eaters—each one of which consumes a different bacterium.

Lendbreen Tunic

A tunic found in the Norway mountains. Credit: Marianne Vedeler

Researchers found one bacterium that could survive in cold and biodegrade oil in contaminated Arctic soil; the bacterium was able to take up 60 percent of the oil around it. This could potentially help clean up oil spills in the Arctic. Two other bacteria species recovered from thawing permafrost were found to degrade dioxins and furans, volatile liquids, which could aid in remediating contaminated sites. One researcher is studying whether organisms in permafrost can produce enzymes that break down plastics.

The melting ice and thawing permafrost have also revealed geography and ancient artifacts that are deepening archaeologists’ understanding of history and culture. In the mountains of Norway, melting ice revealed a remote ancient mountain pass and artifacts from the Roman Iron Age and the time of the Vikings. The pass was an important path for moving livestock between grazing sites and a passageway for travel and trade. Researchers also found numerous tools, artifacts, and weapons that had belonged to the Vikings. In the Jotunheimen Mountain Range of Norway, archaeologists discovered an iron arrowhead dating back to the Norwegian Iron Age.

Ernest Shackleton Endurance Shipwreck

Ernest Shackleton Endurance shipwreck. Credit: Falklands Maritime Heritage Trust

This year, when Antarctic sea ice cover hit a record low, researchers in the Weddell Sea, a remote part of the Antarctic, were searching for the wreckage of Sir Ernest Shackleton’s ship, Endurance. It had been trapped by the sea ice and sunk in 1915.

They were able to find the ship almost 9,900 feet underwater, due in part to reduced ice cover.

In the thawing permafrost of the Yukon, scientists found a perfectly preserved wolf pup that lived 57,000 years ago during the Ice Age, camel bones from 75,000 to 125,000 years ago, and teeth from a hyena-like creature that lived 850,000 to 1.4 million years ago. Because the specimens are well-preserved and contain genetic material, they can help scientists understand how species responded to climate change and human impacts long ago.

As the planet warms, some countries and regions will lose out, while others will benefit. For example, Siberia will likely become a huge wheat producer, and Canada a major wine producer.

Greenland’s economy currently relies on fishing, tourism, and hunting but it will need to exploit its natural resources to support an aging population. The sand and sediment released by Greenland’s melting glaciers could be worth more than $1.11 billion because the world faces a severe shortage of the sand needed to make concrete, computers, and glass. While dredging sand and transporting it could cause environmental damage, a clear majority of Greenlanders polled want their government to explore the extraction and exportation of sand.

As Greenland’s glaciers retreat, they also leave behind silt crushed into nano-size particles by the weight of the ice. This nutrient-rich mud, called glacial rock flour, gives plants more access to nutrients such as potassium, calcium, and silicon, while absorbing CO2 from the air. Adding 27.5 tons of glacial rock flour per hectare increased barley yields in Denmark by 30 percent. Applying 1.1 tons of it to fields absorbs between 250 and 300 kilograms of CO2. The more than one billion tons of glacial rock flour deposited yearly on Greenland could enable farmers to sell carbon credits because of the CO2 absorbed, and boost the country’s economy.

Map of Arctic

Map of the Arctic. Credit: Rosie Rosenberger

The changes raise complex questions

Ultimately, these relatively small potential benefits cannot outweigh the enormous impacts climate change will have on local communities and the planet. “Do I believe that these kinds of changes [mining and shipping opportunities] Traduzir em algo positivo para a comunidade mais ampla do planeta? Schaefer disse. “[They] Irá enriquecer ainda mais uma pequena e já rica minoria de capitalistas.”

Oito países reivindicam terras no Ártico: Canadá, Dinamarca (porque a Groenlândia era sua ex-colônia), Finlândia, Islândia, Noruega, Rússia, Suécia e Estados Unidos, alguns com reivindicações geológicas sobrepostas. À medida que a região se aquece e surgem novas oportunidades de exploração, países “perto do Ártico” como China, Japão, Coréia do Sul, Grã-Bretanha e membros da União Européia também estão se concentrando mais na região. “O Ártico será um futuro campo de batalha pelo domínio econômico e pela posse de recursos naturais”, alertou a analista de inteligência Rebecca Koffler.

É um fato geológico que, quando o gelo derreter e o permafrost derreter, muitas superfícies ficarão expostas. A melhor coisa a fazer, acredita Shafer, é endurecer as leis para que forasteiros ou corporações privadas ricas não possam simplesmente explorar os recursos sem qualquer responsabilidade para com o planeta ou as pessoas que possuem a terra.

A questão de quem se beneficiará dos efeitos das mudanças climáticas, e do derretimento e derretimento das regiões em particular, é complexa. Schaefer acredita que essas questões estão se afastando da ciência climática para a lei e a ética, e que talvez a melhor estrutura para resolvê-las seja priorizar a justiça climática. Ele disse: “As vozes e vozes das pessoas que vivem lá e são donas da terra devem estar no centro de tudo.”

Referência: “Perturbação climática da camada de gelo da Groenlândia e aumento do nível do mar comprometido” por Jason E. Box, Alun Hubbard e David B. Barr, William T. Colgan, Xavier Vitoys, Kenneth D. Mankoff, Adrian Werley, Bryce Noel e Michelle R. van den Broeke, Bert Wouters, Anders A. Bjørk e Robert S. Fausto, 29 de agosto de 2022, disponível aqui. A natureza das mudanças climáticas.
DOI: 10.1038/s41558-022-01441-2

READ  Pequeno microscópio interno pode detectar a formação de células de câncer de mama | Câncer
Continue Reading
Click to comment

Leave a Reply

O seu endereço de e-mail não será publicado. Campos obrigatórios são marcados com *

science

Estudo diz que estilo de vida saudável pode compensar a genética em 60% e acrescentar cinco anos à vida | Pesquisa médica

Published

on

Estudo diz que estilo de vida saudável pode compensar a genética em 60% e acrescentar cinco anos à vida |  Pesquisa médica

Um estilo de vida saudável pode compensar a influência dos genes em mais de 60% e acrescentar mais cinco anos à sua vida, de acordo com um estudo que é o primeiro do género.

Está bem estabelecido que algumas pessoas têm uma predisposição genética para uma vida mais curta. Sabe-se também que fatores de estilo de vida, especificamente tabagismo, consumo de álcool, dieta alimentar e atividade física, podem ter impacto na longevidade.

No entanto, até agora não houve pesquisas para compreender como um estilo de vida saudável pode equilibrar os genes.

Os resultados de vários estudos de longo prazo indicam que um estilo de vida saudável pode compensar os efeitos dos genes que encurtam a vida em 62% e acrescentar até cinco anos à sua vida. E os resultados foram Publicado no BMJ Medicina Baseada em Evidências.

Os pesquisadores concluíram: “Este estudo demonstra o papel fundamental de um estilo de vida saudável na mitigação do efeito de fatores genéticos na redução da expectativa de vida”. “As políticas de saúde pública para melhorar estilos de vida saudáveis ​​servirão como complementos poderosos aos cuidados de saúde tradicionais e mitigarão o impacto dos factores genéticos na esperança de vida humana.”

O estudo incluiu 353.742 pessoas do Biobank do Reino Unido e mostrou que aqueles com alto risco genético para vidas mais curtas tinham um risco 21% maior de morte prematura em comparação com aqueles com baixo risco genético, independentemente do estilo de vida.

Entretanto, investigadores da Escola de Medicina da Universidade de Zhejiang, na China, e da Universidade de Edimburgo descobriram que as pessoas que levam estilos de vida pouco saudáveis ​​têm uma probabilidade 78% maior de morte prematura, independentemente do seu risco genético.

READ  Boeing Starliner retorna da estação espacial

O estudo acrescentou que seguir um estilo de vida pouco saudável e genes com menor expectativa de vida aumenta o risco de morte prematura em mais que o dobro em comparação com pessoas com genes mais afortunados e estilos de vida saudáveis.

No entanto, os pesquisadores descobriram que as pessoas pareciam ter um certo grau de controle sobre o que acontecia. Os pesquisadores descobriram que o risco genético de redução da expectativa de vida ou morte precoce pode ser compensado por um estilo de vida adequado em cerca de 62%.

“Os participantes com alto risco genético poderiam prolongar aproximadamente 5,22 anos de expectativa de vida aos 40 anos com um estilo de vida adequado”, escreveram.

Acontece que a “combinação ideal de estilo de vida” para uma vida mais longa é “nunca fumar, praticar atividade física regular, dormir adequadamente e ter uma dieta saudável”.

O estudo acompanhou pessoas por uma média de 13 anos, durante os quais ocorreram 24.239 mortes. Os indivíduos foram agrupados em três categorias de idade geneticamente determinadas, incluindo longo (20,1%), médio (60,1%) e curto (19,8%), e três categorias de estilo de vida incluindo favorável (23,1%), intermediário (55,6%) e desfavorável. (21,3%). ).

Os pesquisadores usaram pontuações de risco poligênico para observar múltiplas variantes genéticas e chegar à predisposição genética geral de uma pessoa para uma vida mais longa ou mais curta. Outros resultados analisaram se as pessoas fumavam, bebiam álcool, faziam exercício, a forma do corpo, a dieta saudável e o sono.

Matt Lambert, diretor de informação de saúde do Fundo Mundial de Pesquisa do Câncer, disse: “Esta nova pesquisa mostra que, apesar dos fatores genéticos, viver um estilo de vida saudável, incluindo uma dieta equilibrada e permanecer ativo, pode nos ajudar a viver mais”.

READ  Cientistas descobriram padrões solares que podem ajudar a entender o clima espacial
Continue Reading

science

Robôs vs animais: quem ganha a corrida em ambientes naturais?

Published

on

Robôs vs animais: quem ganha a corrida em ambientes naturais?

resumo: Os pesquisadores descobriram se os robôs modernos podem superar os organismos biológicos em velocidade e agilidade. O estudo concluiu que, apesar dos avanços na engenharia, os animais ainda superam os robôs em eficiência locomotiva em ambientes naturais.

Os pesquisadores descobriram que a integração de componentes robóticos fica aquém do processo coerente em nível de sistema observado em animais. Esta visão está a impulsionar o desenvolvimento de sistemas robóticos mais integrados e adaptáveis, inspirados no design da natureza.

Principais fatos:

  1. Eficiência robótica versus biológica: O estudo confirma que os subsistemas robóticos individuais, como potência e atuação, podem igualar ou exceder os seus homólogos biológicos, mas os robôs não têm um desempenho tão bom como os animais quando estes sistemas são combinados.
  2. Modelos biológicos inspiradores: A pesquisa destaca como os animais, como as aranhas-lobo e as baratas, se destacam em terrenos e tarefas complexas devido aos seus sistemas biológicos integrados e versáteis.
  3. Tendências futuras da engenharia: As descobertas incentivam os engenheiros a repensar o design dos robôs e exigem uma abordagem mais integrada, semelhante aos sistemas biológicos, onde diferentes funções são combinadas em componentes únicos.

fonte: Universidade do Colorado

Talvez a questão seja uma versão do século XXI da história da tartaruga e da lebre: quem venceria uma corrida entre um robô e um animal?

Num artigo de nova perspectiva, uma equipa de engenheiros dos Estados Unidos e do Canadá, incluindo o roboticista Kaushik Jayaram, da Universidade do Colorado em Boulder, decidiu responder a este mistério.

Então, como podem os engenheiros construir robôs que, tal como os animais, sejam mais do que apenas a soma das suas partes? Crédito: Notícias de Neurociências

O grupo analisou dados de dezenas de estudos e chegou a um sonoro “não”. Em quase todos os casos, criaturas biológicas, como chitas, baratas e até humanos, parecem ser capazes de superar os seus homólogos robóticos.

Os pesquisadores, liderados por Samuel Borden, da Universidade de Washington, e Maxwell Donnellan, da Universidade Simon Fraser, publicaram suas descobertas na semana passada na revista. Robótica científica.

“Como engenheiro, é meio chato”, disse Jayaram, professor assistente do Departamento de Engenharia Mecânica Paul M. Rady da Universidade do Colorado em Boulder. “Ao longo de 200 anos de extensa engenharia, conseguimos enviar naves espaciais para a Lua, Marte e muito mais. Mas é intrigante que ainda não tenhamos robôs que sejam muito melhores a mover-se em ambientes naturais do que os sistemas biológicos.”

READ  Você sofre de Síndrome do Intestino Irritável ou outros problemas intestinais? Especialistas sugerem evitar esses alimentos desencadeantes

Ele espera que este estudo inspire os engenheiros a aprender como construir robôs mais inteligentes e adaptáveis. Os investigadores concluíram que o fracasso dos robôs em superar os animais não se deve a uma deficiência em qualquer peça de maquinaria, como baterias ou motores. Em vez disso, os engenheiros podem ter dificuldades para fazer com que essas peças funcionem juntas de forma eficiente.

Essa busca é uma das principais paixões de Jayaram. Seu laboratório no campus da CU Boulder é o lar de muitos rastejadores assustadores, incluindo várias aranhas-lobo peludas do tamanho de meio dólar.

“As aranhas-lobo são caçadoras naturais”, disse Jayaram. “Eles vivem sob as rochas e podem correr em terrenos complexos a uma velocidade incrível para capturar presas.”

Ele imagina um mundo em que os engenheiros constroem robôs que agem mais como essas aranhas incomuns.

“Os animais são, até certo ponto, a personificação deste princípio de design definitivo, um sistema que funciona bem em conjunto”, disse ele.

Energia da barata

Pergunta “Quem corre melhor, animais ou robôs?” É complicado porque a operação em si é complicada.

Em pesquisas anteriores, Jayaram e seus colegas da Universidade de Harvard projetaram um grupo de robôs que buscam imitar o comportamento aversivo das baratas. O modelo HAMR-Jr da equipe cabe em uma moeda e corre a velocidades equivalentes à de uma chita. Mas, observou Jayaram, embora o HAMR-Jr possa se mover para frente e para trás, ele não se move bem de um lado para o outro ou em terrenos acidentados.

Em contraste, a humilde barata não tem problemas em atravessar superfícies que vão desde porcelana até terra e cascalho. Eles também podem quebrar paredes e passar por pequenas rachaduras.

READ  Boeing Starliner retorna da estação espacial

Para entender por que esta diversidade é um desafio para a robótica, os autores do novo estudo dividiram estas máquinas em cinco subsistemas, incluindo potência, estrutura, atuação, detecção e controle. Para surpresa do grupo, alguns destes subsistemas pareciam estar aquém dos seus homólogos animais.

Por exemplo, baterias de íons de lítio de alta qualidade podem fornecer até 10 quilowatts de energia para cada quilograma (2,2 libras) que pesam. Por outro lado, o tecido animal produz cerca de um décimo disso. Enquanto isso, os músculos não chegam nem perto de igualar o torque absoluto de muitos motores.

“Mas no nível do sistema, os robôs não são bons”, disse Jayaram. “Enfrentamos compromissos inerentes ao design. Se tentarmos melhorar uma coisa, como a velocidade de avanço, podemos perder outra coisa, como a capacidade de virar.

Sentidos de aranha

Então, como podem os engenheiros construir robôs que, tal como os animais, sejam mais do que apenas a soma das suas partes?

Jayaram observou que os animais não são divididos em subsistemas separados da mesma forma que os robôs. Por exemplo, seus quadríceps impulsionam suas pernas como os motores HAMR-Jr impulsionam seus membros. Mas os quadríceps também produzem sua própria força, quebrando gorduras e açúcares e integrando células nervosas que podem sentir dor e pressão.

Jayaram acredita que o futuro da robótica pode estar limitado a “subunidades funcionais” que fazem a mesma coisa: em vez de manter as fontes de alimentação separadas dos motores e das placas de circuito, por que não integrá-las todas numa única peça?

Num artigo de 2015, o cientista da computação Nicholas Curiel, que não esteve envolvido no estudo atual, propôs tais “materiais robóticos” teóricos que agiriam mais como quads.

Os engenheiros ainda estão longe de atingir esse objetivo. Alguns, como Jayaram, estão tomando medidas nessa direção, como acontece com o Robô Artrópode Inseto Articulado (CLARI) de seu laboratório, um robô com várias pernas que se move um pouco como uma aranha.

READ  O rover Perseverance da NASA descobre produtos químicos orgânicos em Marte

Jayaram explicou que o CLARI é baseado em um design modular, com cada uma de suas pernas atuando como um robô autônomo com motor, sensores e circuitos de controle próprios. A nova e melhorada versão da equipe, chamada mCLARI, pode se mover em todas as direções em espaços apertados, uma novidade para robôs de quatro patas.

É outra coisa que engenheiros como Jayaram podem aprender com esses caçadores por excelência, as aranhas-lobo.

“A natureza é uma professora realmente útil.”

Sobre notícias de pesquisa em robótica e neurotecnologia

autor: Daniel Tensão
fonte: Universidade do Colorado
comunicação: Daniel Strain – Universidade do Colorado
foto: Imagem creditada ao Neuroscience News

Pesquisa original: Acesso livre.
Por que os animais podem superar os robôs?“Por Kaushik Jayaram et al. Robótica científica


um resumo

Por que os animais podem superar os robôs?

Os animais correm muito melhor do que os robôs. A diferença no desempenho surge nas importantes dimensões de agilidade, alcance e durabilidade.

Para compreender as razões por trás desta lacuna de desempenho, comparamos tecnologias naturais e artificiais em cinco subsistemas operacionais críticos: potência, estrutura, atuação, detecção e controle.

Com poucas exceções, as tecnologias projetadas atendem ou excedem o desempenho de suas contrapartes biológicas.

Concluímos que a vantagem da biologia sobre a engenharia surge de uma melhor integração dos subsistemas e identificamos quatro obstáculos principais que os roboticistas devem superar.

Para atingir esse objetivo, destacamos direções de pesquisa promissoras que têm um enorme potencial para ajudar futuros robôs a alcançarem desempenho de nível animal.

Continue Reading

science

NASA está buscando informações sobre a escassez de tecnologia espacial

Published

on

NASA está buscando informações sobre a escassez de tecnologia espacial

WASHINGTON – A NASA está buscando a opinião do público sobre como priorizar quase 200 tópicos em tecnologia espacial para melhorar a forma como investe financiamento limitado neles.

A agência emitiu Lista de 187 “deficiências tecnológicas” Ou tópicos onde a tecnologia atual requer desenvolvimento adicional para atender às necessidades futuras da NASA. A escassez existe em 20 áreas, desde transporte espacial e suporte de vida até gestão de energia e calor.

Através de um local na rede InternetA agência convida as pessoas a revisarem as tecnologias listadas e avaliarem sua importância até o dia 13 de maio. A NASA usará essas informações para ajudar a priorizar essas tecnologias para investimentos futuros para preencher a lacuna.

Isto faz parte de um esforço da Direcção de Missões de Tecnologia Espacial (STMD) da agência para fornecer uma abordagem mais rigorosa à forma como o desenvolvimento tecnológico é apoiado. “A NASA entrou num ritmo de batalha com as nossas partes interessadas, onde priorizamos mais a área de atividades em que estamos engajados, em vez de inicialmente em torno do espaço do problema: os problemas que estamos trabalhando para resolver”, disse Curt. “Spuds” Vogel, administrador associado de tecnologia espacial da NASA, na reunião de 23 de abril do Consórcio de Inovação da Superfície Lunar.

Ele disse que a abordagem antiga corre o risco de transformar o programa de tecnologia espacial da NASA numa “loja de passatempos” sujeita aos caprichos dos decisores políticos. “Este é o foco errado.”

Ao priorizar as deficiências tecnológicas, ele disse que a NASA terá mais condições de investir seu financiamento nas mais importantes. “Estamos sobrecarregados. Isso significa que não temos orçamento para resolver todos esses problemas de uma vez, então temos que priorizar os dólares limitados com os quais somos abençoados para atacar os problemas que mais importam para nossas partes interessadas.”

READ  Cientistas descobriram padrões solares que podem ajudar a entender o clima espacial

Através deste processo, as pessoas poderão avaliar a importância de algumas ou de todas as deficiências tecnológicas identificadas pela NASA. Podem também listar tecnologias que considerem que deveriam ser incluídas ou identificar deficiências que considerem já terem sido resolvidas.

A NASA usará as informações deste processo, bem como um esforço interno separado da agência, para desenvolver uma lista classificada de tecnologias. “Isso deverá estar pronto neste verão”, disse Alisyn Lowry, diretora de planejamento estratégico e integração da STMD, numa apresentação separada na reunião de 24 de abril.

Embora a NASA não publique contribuições individuais, ela planeja revelar como diferentes grupos de partes interessadas na indústria e na academia classificaram as tecnologias. Mas Vogel enfatizou que a contribuição pública será apenas um factor na definição de prioridades globais.

“É uma ferramenta, não uma ferramenta”, disse ele, descrevendo as informações como parte de uma “trilha de auditoria” usada para vincular tecnologias a problemas. “Isso terá impacto no que fazemos, mas tomaremos as decisões finais.”

Ele disse que o número do défice pode mudar nos próximos anos com base nos dados desta análise do défice, para cima ou para baixo. Vogel disse que espera que a NASA atualize as prioridades anualmente. “Nos primeiros dois anos será onde a maioria das mudanças acontecerá. Depois disso, tudo se tornará contínuo e você verá isso como uma ferramenta que poderá usar de maneira semelhante à que usaremos também.”

Continue Reading

Trending

Copyright © 2023