Connect with us

science

Stargazers terão a oportunidade de ver um novo cometa no final de janeiro

Published

on

Stargazers terão a oportunidade de ver um novo cometa no final de janeiro

Os astrônomos nem sempre têm a oportunidade de detectar um cometa a olho nu.

Mas no final deste mês – ou talvez no início de fevereiro – uma rocha espacial recém-descoberta passará zunindo pelo nosso planeta e iluminará o céu noturno.

Descoberto em março do ano passado enquanto estava dentro da órbita de Júpiter, o C/2022 E3 (ZTF) fará sua aproximação mais próxima do Sol em 12 de janeiro e da Terra em 2 de fevereiro.

Os cometas são notoriamente imprevisíveis, mas se continuarem com sua tendência atual de brilho, devem ser fáceis de detectar com binóculos ou telescópio.

Encontre este mês! Descoberto em março do ano passado enquanto estava dentro da órbita de Júpiter, o C/2022 E3 (ZTF) fará sua aproximação mais próxima do Sol em 12 de janeiro e da Terra em 2 de fevereiro.

Fatos principais: COMET C/2022 E3

Última aparição da Terra: era do Gelo

Aproximação mais próxima do sol: 12 de janeiro

Abordagem mais próxima da Terra: 2 de fevereiro

Próximo visível: 50.000 anos

Distância na aproximação mais próxima: 26,4 milhões de milhas (42,5 milhões de km) da Terra

Descobrir: março de 2022

Visto por: Zwicky Transit Facility na Califórnia

Será visível a olho nu? Pode ser

Onde pesquisar: No céu da manhã a nordeste

Melhor ainda, pode ser visível a olho nu se o céu estiver escuro no final do mês.

Se for esse o caso, seria o primeiro cometa visível a olho nu desde que o NEOWISE passou pela Terra em 2020, embora não seja nem de longe tão espetacular.

O NEOWISE deixou uma cauda longa e difusa, enquanto o E3 provavelmente aparecerá como uma faixa cinza ou mancha no céu noturno.

READ  Veja Marte no seu melhor esta noite com este telescópio gratuito

No entanto, nenhum deles iguala o brilho do Hale-Bopp, que foi amplamente visto em 1997.

Os astrônomos não esperam que o cometa C/2022 E3 visite a Terra novamente por pelo menos mais 50.000 anos, depois que foi visível pela última vez durante a Idade do Gelo.

Em termos de passagem em nosso planeta, não será próximo. Na verdade, ele chegou mais perto da Terra a 26,4 milhões de milhas (42,5 milhões de quilômetros) em 2 de fevereiro.

Os observadores do Hemisfério Norte encontrarão o cometa no céu da manhã, enquanto ele se move rapidamente de nordeste para noroeste e passa entre as Ursas Menor e Maior durante o mês de janeiro.

“Não se espera que este cometa seja o cenário em que o cometa NEOWISE retorne em 2020”, disse Preston Dyches, do Laboratório de Propulsão a Jato da NASA, em um vídeo divulgado pela agência espacial dos EUA.

Mas ainda é uma grande oportunidade de fazer uma conexão pessoal com um visitante gelado do distante sistema solar externo.

Os astrônomos no Hemisfério Sul terão que esperar um pouco mais para dar uma olhada, porque o cometa C/2022 E3 não será visível para eles até o início de fevereiro.

Em março de 2022, os astrônomos descobriram a nova rocha espacial usando a Wide Field Survey Camera no Zwicky Transit Facility, na Califórnia.

Desde então, o novo cometa de longo período aumentou drasticamente e agora está passando pela constelação do norte Corona Borealis no céu antes do amanhecer.

No final do ano passado, os cientistas obtiveram a primeira imagem detalhada revelando o novo e brilhante Cometa esverdeado C/2022 E3 com uma cauda de poeira amarela.

READ  5,3 milhões de frangos mortos em Iowa devido a surto de gripe aviária

Os cometas são feitos de gelo, gás e rocha – geralmente descritos como icebergs espaciais gigantes – que tendem a aparecer no sistema solar externo e se mover em longas órbitas.

Os cometas são notoriamente imprevisíveis, mas se isso continuar com sua tendência atual de brilho, deve ser fácil detectá-los com binóculos ou um telescópio.

Os cometas são notoriamente imprevisíveis, mas se isso continuar com sua tendência atual de brilho, deve ser fácil detectá-los com binóculos ou um telescópio.

Os observadores do Hemisfério Norte encontrarão o cometa no céu da manhã, enquanto ele se move rapidamente de nordeste para noroeste e passa entre as Ursas Menor e Maior durante o mês de janeiro.

Os observadores do Hemisfério Norte encontrarão o cometa no céu da manhã, enquanto ele se move rapidamente de nordeste para noroeste e passa entre as Ursas Menor e Maior durante o mês de janeiro.

Em março de 2022, os astrônomos descobriram a nova rocha espacial usando a Wide Field Survey Camera no Zwicky Transit Facility, na Califórnia.  Ela está retratada aqui no centro desta foto

Em março de 2022, os astrônomos descobriram a nova rocha espacial usando a Wide Field Survey Camera no Zwicky Transit Facility, na Califórnia. Ela está retratada aqui no centro desta foto

O outro tipo principal de rocha espacial, chamado de asteroides, tende a ser feito de metal ou rocha e pode vir de qualquer lugar do sistema solar – incluindo o grande grupo de asteroides que fica entre Marte e Júpiter.

O cometa Neowise foi observado pela primeira vez pelo Telescópio Infravermelho de Campo Amplo da NASA (NEOWISE) e recebeu seu nome em março de 2020.

Em seguida, o corpo gelado tornou-se visível da superfície da Terra do Hemisfério Norte por um curto período de tempo no verão daquele ano, pois sua proximidade com o Sol o fez derreter, liberando caudas de poeira e gás atrás dele.

Durante sua maior aproximação em 23 de julho de 2020, ainda estava a 64 milhões de milhas do planeta.

Em seguida, ele voltou ao espaço a cerca de 144.000 milhas por hora e não retornaria por cerca de 7.000 anos.

O cometa NEOWISE é retratado sobre o Líbano em uma imagem compartilhada pela NASA em 2020

O cometa NEOWISE é retratado sobre o Líbano em uma imagem compartilhada pela NASA em 2020

Se você gostou deste artigo…

Mundos aquáticos e um gigante gasoso ‘no útero’ estão entre os estranhos e maravilhosos novos exoplanetas descobertos em 2022

O estudo determinou que o cometa Atlas pode ser o remanescente de uma misteriosa bola de fogo que varreu 23 milhões de milhas do sol há 5.000 anos.

A NASA está pedindo ajuda para salvar o Hubble, impulsionando-o para uma órbita mais alta com uma espaçonave privada

Explicação: A diferença entre um asteróide, meteorito e outras rochas espaciais

este asteróide É um grande pedaço de rocha que sobrou de impactos ou do início do sistema solar. A maioria deles está localizada entre Marte e Júpiter no cinturão principal.

uma cometa É uma rocha coberta de gelo, metano e outros compostos. Suas órbitas os levam para longe do sistema solar.

uma meteoro É o que os astrônomos chamam de flash de luz na atmosfera enquanto os detritos queimam.

Este mesmo naufrágio é conhecido como meteoro. A maior parte é tão pequena que simplesmente seca na atmosfera.

Se algum desses meteoritos atingir a Terra, é chamado de meteoro.

Meteoros, meteoroides e meteoroides geralmente se originam de asteróides e cometas.

Por exemplo, se a Terra passar pela cauda de um cometa, grande parte dos detritos queima na atmosfera, formando uma chuva de meteoros.

Continue Reading
Click to comment

Leave a Reply

O seu endereço de e-mail não será publicado. Campos obrigatórios são marcados com *

science

Um cientista que captura a luz solar para atingir uma temperatura de quase 2.000 graus Fahrenheit

Published

on

Um cientista que captura a luz solar para atingir uma temperatura de quase 2.000 graus Fahrenheit

Os engenheiros estão a trabalhar numa nova solução de energia limpa: carregar os cristais com energia solar a temperaturas de até 1.832 graus Fahrenheit (1.000 graus Celsius), o que poderia torná-los uma alternativa mais verde aos processos intensivos em carbono que fundem aço e cozinham cimento.

Nova tecnologia – descrita em um estudo de prova de conceito Publicados Hoje no aparelho – ele aproveita a propriedade do quartzo que permite reter a luz solar. Ao anexar uma haste de quartzo sintético a um disco de silício usado para absorver energia, a equipe testou se o dispositivo poderia reter calor. Eles explodiram com a energia equivalente à luz solar de 136 sóis; A temperatura da haste subiu para cerca de 1112°F (600°C), mas a placa absorvedora atingiu uma temperatura de 1922°F (1050°C).

“As pessoas tendem a pensar na eletricidade apenas como energia, mas, na realidade, cerca de metade da energia é utilizada na forma de calor”, disse Emiliano Casati, engenheiro da ETH Zurique e autor correspondente do estudo, na revista Cell. lançar. “Para enfrentar as alterações climáticas, precisamos descarbonizar a energia em geral.”

Até agora, os receptores solares – dispositivos que concentram o calor dos espelhos que reflectem a luz solar – têm sido incapazes de lidar eficientemente com a energia solar a temperaturas superiores a 1.832 graus Fahrenheit (1.000 graus Celsius). Alguns dos processos intensivos em carbono mais difundidos, como o fabrico de vidro, aço e cimento, requerem temperaturas que excedem este limite, o que as empresas conseguem através da queima de combustíveis fósseis. Somente a fabricação de cimento foi responsável por cerca de 8% das emissões de dióxido de carbono em 2023, De acordo com a CBS NewsO derretimento do vidro é responsável por cerca de 95 milhões de toneladas de carbono produzidas pela atividade humana, segundo a pesquisa Publicados No início deste ano no Journal of the American Ceramic Society.

READ  A nave espacial Juno da NASA está descobrindo mais sobre a Grande Mancha Vermelha de Júpiter

Fábricas de cimento ao longo do rio Yangtze, na China.

Fábricas de cimento ao longo do rio Yangtze, na China.
foto: Tim Graham (Imagens Getty)

Adicionar quartzo ao mix de fabricação poderia permitir que os fabricantes atingissem as temperaturas necessárias para trabalhar com aço, vidro e cimento usando a luz solar, em vez de depender apenas de Processos que levam ao aumento da temperatura do nosso planeta.

“A questão energética é a pedra angular da sobrevivência da nossa sociedade”, disse Casati. “A energia solar está prontamente disponível e a tecnologia já existe. Para estimular verdadeiramente a adopção pela indústria, precisamos de demonstrar a viabilidade económica e os benefícios desta tecnologia em grande escala.”

Além dos testes experimentais, os pesquisadores modelaram a eficácia da configuração e descobriram que o quartzo aumenta a eficiência do receptor. Em seu modelo, o receptor desprotegido foi 40% eficiente a 2.192 °F (1.200 °C), mas foi 70% eficaz na mesma temperatura quando o receptor foi protegido por 11,8 polegadas (300 mm) de quartzo.

A equipa está agora a testar outros materiais, incluindo líquidos e gases, que podem funcionar como armadilhas de calor. Através das suas capacidades de retenção de calor, estes materiais podem aumentar a eficácia das soluções de energia renovável que ainda têm um longo caminho a percorrer para substituir a prioridade de longa data dos combustíveis fósseis.

mais: Os texanos votam por bilhões de dólares em combustíveis fósseis, descartando as energias renováveis ​​como uma opção

Continue Reading

science

Físicos de Princeton desvendam segredos do magnetismo cinético

Published

on

Físicos de Princeton desvendam segredos do magnetismo cinético

Pesquisadores da Universidade de Princeton fizeram um grande avanço na compreensão do magnetismo cinético ao usar átomos ultrafrios em uma rede feita a laser para criar imagens de um novo tipo de polaron, revelando como o movimento de impurezas na matriz atômica causa forte magnetismo em altas temperaturas. Crédito: SciTechDaily.com

Físicos de Universidade de Princeton Eles visualizaram diretamente o objeto microscópico responsável por esse magnetismo, um tipo incomum de polaron.

Nem todos os ímãs são iguais. Quando pensamos em magnetismo, geralmente pensamos em ímãs que grudam na porta da geladeira. Para estes tipos de ímanes, as interações eletrónicas que dão origem ao magnetismo são compreendidas há cerca de um século, desde os primórdios da mecânica quântica. Mas existem muitas formas diferentes de magnetismo na natureza e os cientistas ainda estão a descobrir os mecanismos que as impulsionam.

Agora, físicos da Universidade de Princeton fizeram progressos significativos na compreensão de uma forma de magnetismo conhecida como magnetismo cinético, usando átomos ultrafrios ligados a uma rede artificial feita com laser. Suas experiências são narradas em um artigo de pesquisa publicado esta semana na revista naturezaIsso permitiu aos pesquisadores obter imagens diretas do objeto microscópico responsável por esse magnetismo, um tipo incomum de polaron, ou quasipartícula, que aparece em um sistema quântico em interação.

Compreendendo o magnetismo cinético

“Isso é muito emocionante”, disse Waseem Bakr, professor de física na Universidade de Princeton e principal autor do estudo. “As origens do magnetismo têm a ver com o movimento de impurezas na matriz atômica, daí o nome Cinética Magnetismo. Este movimento é altamente incomum e resulta em forte magnetismo mesmo em temperaturas muito altas. Combinado com a possibilidade de ajustar o magnetismo com dopagem – adição ou remoção de partículas – o magnetismo cinético é muito promissor para aplicações de dispositivos em materiais reais.

Bakr e sua equipe estudaram esta nova forma de magnetismo com um nível de detalhe não alcançado em pesquisas anteriores. Graças ao controle fornecido pelos sistemas atômicos ultrafrios, os pesquisadores conseguiram, pela primeira vez, visualizar a física precisa que dá origem ao magnetismo cinético.

Origens microscópicas magnéticas

Pesquisadores da Universidade de Princeton visualizaram diretamente as origens microscópicas de um novo tipo de magnetismo. Crédito da imagem: Max Pritchard, coleção Waseem Bakr da Universidade de Princeton

Ferramentas avançadas para descobertas quânticas

“Temos a capacidade em nosso laboratório de analisar este sistema individualmente milho “Os pesquisadores estão monitorando o nível de um único local na rede e tirando fotos das correlações quânticas precisas entre as partículas do sistema”, disse Baker.

READ  Astrônomos revelaram o mapa mais detalhado do asteróide Psyche até agora

Durante vários anos, Bakr e sua equipe de pesquisa estudaram estados quânticos fazendo experiências com partículas subatômicas ultrafrias conhecidas como férmions em uma câmara de vácuo. Eles criaram um dispositivo sofisticado que resfria átomos a temperaturas criogênicas e os mantém em cristais artificiais conhecidos como redes ópticas criadas com feixes de laser. Este sistema permitiu aos investigadores explorar muitos aspectos interessantes do mundo quântico, incluindo o comportamento emergente de grupos de partículas em interação.

Fundamentos teóricos e insights experimentais

Um dos primeiros mecanismos teoricamente propostos para o magnetismo que lançou as bases para os experimentos atuais da equipe é conhecido como ferromagnetismo de Nagaoka, em homenagem ao seu descobridor Yosuke Nagaoka. Ferromagnetos são aqueles em que todos os estados de spin do elétron apontam na mesma direção.

Embora um ferromagneto com spins alinhados seja o tipo mais comum de ímã, no cenário teórico mais simples, os elétrons que interagem fortemente na rede tendem, na verdade, ao antiferromagnetismo, com os spins se alinhando em direções alternadas. Essa preferência em resistir ao alinhamento dos spins vizinhos ocorre como resultado do acoplamento indireto dos spins de elétrons vizinhos, conhecido como supertroca.

No entanto, Nagaoka teorizou que o ferromagnetismo também pode resultar de um mecanismo completamente diferente, determinado pelo movimento de impurezas adicionadas intencionalmente, ou dopagem. Isto pode ser melhor compreendido imaginando uma rede quadrada bidimensional, onde cada sítio da rede é ocupado por um elétron, exceto um. Um site desocupado (ou buraco semelhante) percorre a rede.

Nagaoka descobriu que se o buraco se move em um ambiente com spins paralelos ou ferromagnetos, os diferentes caminhos do movimento do buraco quântico interferem mecanicamente entre si. Isso aumenta a propagação do buraco quântico para fora do local e reduz a energia cinética, o que é um resultado positivo.

O Legado Nagaoka e a Mecânica Quântica Moderna

A teoria de Nagaoka rapidamente ganhou reconhecimento porque havia poucas provas rigorosas que afirmavam explicar os estados fundamentais de sistemas de elétrons em forte interação. Mas monitorizar as consequências através de experiências foi um desafio difícil devido aos requisitos rigorosos do modelo. Em teoria, as reações deveriam ser infinitamente fortes e apenas um dopante é permitido. Ao longo das cinco décadas após Nagaoka ter proposto a sua teoria, outros investigadores perceberam que estas condições irrealistas poderiam ser significativamente atenuadas em redes com geometria triangular.

Experimento quântico e seus efeitos

Para conduzir o experimento, os pesquisadores usaram vapores de átomos de lítio-6. Este isótopo de lítio possui três elétrons, três prótons e três nêutrons. “O número total ímpar torna este isótopo fermiônico, o que significa que os átomos se comportam de forma semelhante aos elétrons em um sistema de estado sólido”, disse Benjamin Spar, estudante de graduação em física na Universidade de Princeton e coautor do estudo.

READ  Espécie antiga de tartaruga 'Turtwig' foi descoberta após mistério fóssil resolvido

Quando esses gases são resfriados usando lasers a temperaturas extremas de apenas alguns bilionésimos de grau Zero absolutoSeu comportamento começa a obedecer aos princípios da mecânica quântica, em vez da mecânica clássica, mais familiar.

Explorando estados quânticos por meio de configurações de átomos frios

“Assim que alcançarmos esse sistema quântico, a próxima coisa que faremos é carregar os átomos na rede óptica triangular”, diz Spar. “Em uma configuração de átomo frio, podemos controlar a rapidez com que os átomos se movem ou com que intensidade eles interagem com cada um. outro.”

Em muitos sistemas altamente interagentes, as partículas na rede são organizadas num “isolante de morte”, um estado da matéria em que uma única partícula ocupa cada local da rede. Neste caso, existem interações ferromagnéticas fracas devido à troca supérflua entre os spins dos elétrons em locais adjacentes. Mas em vez de usar um tampão de morte, os investigadores usaram uma técnica chamada “enxerto”, que remove algumas moléculas, deixando assim “buracos” na malha, ou adiciona moléculas adicionais.

Descobrindo novas formas de magnetismo quântico

“Não começamos com uma semente por local em nosso experimento”, disse Baker. “Em vez disso, cobrimos a rede com buracos ou moléculas. E quando você faz isso, descobre que existe uma forma de magnetismo muito mais forte que é observada nesses sistemas em uma escala de energia mais alta do que o magnetismo de supertroca usual. Esta escala de energia tem tem a ver com átomos saltando na rede.”

Aproveitando as distâncias maiores entre os locais da rede nas redes ópticas em comparação com os materiais reais, os pesquisadores conseguiram ver o que estava acontecendo no nível de um único local usando microscopia óptica. Eles descobriram que os objetos responsáveis ​​por esta nova forma de magnetismo são um novo tipo de pólo magnético.

O papel dos polarons em sistemas quânticos

“Um polaron é uma quasipartícula que aparece em um sistema quântico com muitos componentes interagindo”, disse Baker. “Ele se comporta de maneira muito semelhante a uma partícula normal, o que significa que possui propriedades como carga, spin e massa efetiva, mas não é uma partícula real como um átomo. Nesse caso, é um material dopante que se move com uma perturbação em seu ambiente magnético. , ou como os giros estão alinhados em torno deles em relação uns aos outros.

READ  Parece que a rocha de Marte está presa na roda do rover perseverance

Em materiais reais, esta nova forma de magnetismo já havia sido observada nos chamados materiais moiré, compostos de cristais 2D empilhados, e isso aconteceu apenas no ano passado.

Investigue mais profundamente o magnetismo quântico

“As sondas de magnetismo disponíveis para estes materiais são limitadas. Experimentos com materiais moiré mediram os efeitos macroscópicos associados à forma como um grande pedaço de material responde quando um campo magnético é aplicado”, disse Spar. “Com a configuração do átomo frio, podemos. aprofundar-se nas microestruturas físicas responsáveis ​​pelo magnetismo. Capturamos imagens detalhadas que revelam as correlações em torno do doping móvel. Por exemplo, uma borda cheia de buracos envolve-se com spin anti-alinhamento à medida que se move, enquanto uma partícula melhorada faz o oposto, cercando-se com spin coerente.

Esta pesquisa tem implicações de longo alcance para a física da matéria condensada, indo além da compreensão da física do magnetismo. Por exemplo, levantou-se a hipótese de que versões mais complexas destes polarons dão origem a mecanismos de acoplamento de dopagem de buracos, o que poderia levar à supercondutividade a altas temperaturas.

Direções futuras na pesquisa de magnetismo quântico

“A parte mais interessante desta pesquisa é que ela realmente coincide com estudos na comunidade da matéria condensada”, disse Max Pritchard, estudante de graduação e coautor do artigo. “Estamos numa posição única para fornecer informações oportunas sobre um problema de um ângulo completamente diferente, e todas as partes serão beneficiadas.”

Olhando para o futuro, os investigadores já estão a descobrir formas novas e inovadoras de explorar ainda mais esta estranha nova forma de magnetismo – e investigar a polaridade do spin com mais detalhe.

Próximos passos na pesquisa Polaron

“Nesta primeira experiência, simplesmente tiramos fotos do polaron, o que é apenas o primeiro passo”, disse Pritchard. “Mas agora estamos interessados ​​em realizar uma medição espectroscópica dos polarons. Queremos ver quanto tempo os polarons sobrevivem no sistema em interação, para medir a energia que liga os componentes do polaron e sua massa efetiva à medida que se propagam na rede. Há muito mais o que fazer.”

Outros membros da equipe são Zoe Yan, agora em Universidade de Chicagoe os teóricos Ivan Moreira, da Universidade de Barcelona, ​​​​Espanha, e Eugene Demmler, do Instituto de Física Teórica de Zurique, Suíça. O trabalho experimental foi apoiado pela National Science Foundation, pelo Army Research Office e pela David and Lucile Packard Foundation.

Referência: “Imagem direta de pólos de spin em um sistema Hubbard cineticamente frustrado” por Max L. Pritchard, Benjamin M. Spar, Ivan Moreira, Eugene Demmler, Zoe Z. Yan e Wasim S. Bakr, 8 de maio de 2024, natureza.
doi: 10.1038/s41586-024-07356-6

Continue Reading

science

Sem voz interna? Um novo estudo revela seu efeito na memória

Published

on

Sem voz interna?  Um novo estudo revela seu efeito na memória

resumo: Um novo estudo descobriu que algumas pessoas não possuem uma voz interior, chamada anendofasia, o que afeta a memória verbal e o reconhecimento de rimas. Os participantes sem voz interior tiveram mais dificuldade em realizar essas tarefas do que aqueles com voz interior.

O estudo destaca as estratégias cognitivas únicas usadas por indivíduos com anorexia. Pesquisas futuras explorarão como isso afeta outros processos e tratamentos cognitivos.

Principais fatos:

  1. Indovasia: Estado de falta de voz interior, que afeta a memória verbal e o reconhecimento de rimas.
  2. Resultados: Pessoas que não têm voz interior têm pior desempenho na lembrança de palavras e rimas.
  3. Estratégias cognitivas: Indivíduos com anorexia utilizam estratégias únicas para resolver problemas.

fonte: Universidade de Copenhague

Anteriormente, era comum presumir-se que ter uma voz interior deveria ser uma coisa humana universal. Mas nos últimos anos, os investigadores perceberam que nem todos partilham esta experiência.

De acordo com o pesquisador de pós-doutorado e linguista Johan Nedergaard, da Universidade de Copenhague, as pessoas descrevem o estado de vida sem uma voz interior como demorado e difícil porque precisam despender tempo e esforço para traduzir seus pensamentos em palavras:

“Alguns dizem que pensam em imagens e depois traduzem as imagens em palavras quando precisam dizer algo. Outros descrevem o seu cérebro como um computador que funciona bem e que não processa pensamentos verbalmente, e que comunicar com um altifalante e microfone é diferente de comunicar. com outros.

“E aqueles que dizem que há algo verbal acontecendo dentro de suas cabeças geralmente descrevem isso como palavras sem som.”

– Dificuldade em lembrar palavras e rimas

Johan Nedergaard e seu colega Gary Lupyan, da Universidade de Wisconsin-Madison, são os primeiros pesquisadores do mundo a investigar se a falta de uma voz interior, ou Andonovasia Tal como formularam este caso, este tem quaisquer consequências na forma como estas pessoas resolvem problemas, por exemplo, na forma como realizam tarefas de memória verbal.

READ  Astrônomos capturam uma erupção vulcânica de buraco negro enorme perto da Terra que se estende 16 vezes a lua cheia no céu

Pessoas que relataram ter experimentado um alto grau de voz interior ou muito pouca voz interior na vida cotidiana foram submetidas a um experimento com o objetivo de determinar se havia uma diferença em sua capacidade de lembrar a entrada da linguagem e outro sobre sua capacidade de encontrar palavras que rimam.

O primeiro experimento envolveu os participantes lembrando palavras em ordem – palavras que eram semelhantes, tanto fonética quanto ortograficamente, por exemplo, “comprou”, “pegou”, “parafusado” e “verruga”.

“É uma tarefa que seria difícil para todos, mas nossa hipótese era que poderia ser mais difícil se você não tivesse uma voz interior, porque você teria que repetir as palavras para si mesmo, dentro de sua cabeça, até se lembrar delas.” Johan Nedergaard explica e continua:

Esta hipótese revelou-se correta: os participantes que não tinham voz interior eram significativamente piores na memorização de palavras.

O mesmo aconteceu com a tarefa em que os participantes tinham que determinar se um par de imagens continha palavras que rimavam, por exemplo, imagens de uma meia e de um relógio.

Também é importante aqui poder repetir palavras para comparar seus sons e assim determinar se rimam ou não.

Em duas outras experiências, nas quais Johan Nedergaard e Gary Lupyan testaram o papel da voz interior na mudança rápida entre diferentes tarefas e na distinção entre formas muito semelhantes, não encontraram diferenças entre os dois grupos.

Embora estudos anteriores sugiram que a linguagem e a voz interior desempenham um papel neste tipo de experiência.

Pessoas que não têm voz interior podem ter aprendido a usar outras estratégias. Por exemplo, alguns disseram que batiam com o dedo indicador ao realizar um tipo de tarefa e com o dedo médio ao realizar outro tipo de tarefa”, diz Johan Nedergaard.

READ  Os cientistas estão errados sobre o planeta Mercúrio? Seu grande coração de ferro pode ser devido ao magnetismo!

Os resultados do estudo dos pesquisadores acabam de ser publicados em um artigo intitulado “Nem todo mundo tem uma voz interior: consequências comportamentais da perda de fase” na revista científica Ciências psicológicas.

Existe alguma diferença?

Segundo Johan Nedergaard, as diferenças na memória verbal que identificaram nas suas experiências não seriam observadas nas conversas normais do dia-a-dia. A questão é: Ter uma voz interior tem algum significado prático ou comportamental?

“A resposta curta é que não sabemos porque estamos apenas começando a estudá-la. Mas há uma área em que suspeitamos que ter uma voz interior desempenha um papel: a terapia na terapia cognitivo-comportamental amplamente utilizada; por exemplo, você precisa identificar padrões de pensamento negativos e alterá-los. Ter uma voz interior pode ser muito importante nesse processo.

“No entanto, ainda é incerto se as diferenças na experiência da voz interior estão relacionadas com a forma como as pessoas respondem a diferentes tipos de terapia”, diz Johan Nedergaard, que quer continuar a sua investigação para ver se outras áreas da linguagem são afetadas se o fizer. não ter uma voz interior.

“Os experimentos onde encontramos diferenças entre os grupos estavam relacionados ao som e à capacidade de ouvir as próprias palavras. Gostaria de estudar se isso ocorre porque eles não estão vivenciando o aspecto sonoro da linguagem ou se não estão pensando nada sobre isso. forma linguística como a maioria das outras pessoas.”

Sobre o estudo

O estudo de Johan Nedergaard e Gary Lupyan incluiu quase uma centena de participantes, metade dos quais tinha muito pouca voz interior e a outra metade tinha muita voz interior.

Os participantes foram expostos a quatro tentativas de, por exemplo, lembrar palavras em sequência e alternar entre diferentes tarefas.

READ  5,3 milhões de frangos mortos em Iowa devido a surto de gripe aviária

O estudo foi publicado na revista científica Ciências psicológicas.

Johan Nedergaard e Gary Lupyan chamaram a condição de não ter voz interior de anendofasia, o que significa não ter voz interior.

Sobre notícias de pesquisa sobre amnésia e memória

autor: Carsten Munk Hansen
fonte: Universidade de Copenhague
comunicação: Carsten Munk Hansen – Universidade de Copenhague
foto: Imagem creditada ao Neuroscience News

Pesquisa original: Acesso fechado.
Nem todo mundo tem uma voz interior: consequências comportamentais da endofobia“Por Johan Nedergaard et al. Ciências psicológicas


um resumo

Nem todo mundo tem uma voz interior: consequências comportamentais da endofobia

Geralmente, presume-se que a fala interior – a experiência do pensamento tal como ocorre na linguagem natural – é universalmente humana.

No entanto, evidências recentes sugerem que a experiência da fala interior em adultos varia de quase constante a inexistente.

Propomos um nome para a inexperiência do discurso interior – Andofasia – e relatamos quatro estudos que investigam algumas das suas consequências comportamentais.

Descobrimos que os adultos que relataram níveis mais baixos de fala interior (n = 46) tiveram pior desempenho em uma tarefa de memória operacional verbal e maior dificuldade em realizar julgamentos de rimas do que adultos que relataram altos níveis de fala interna (n = 47).

O desempenho na troca de tarefas, anteriormente ligado a dicas verbais internas, e efeitos categóricos nos julgamentos perceptivos, não foram relacionados a diferenças na fala interna.

Continue Reading

Trending

Copyright © 2023