Connect with us

science

Como um sol tempestuoso poderia ter começado a vida na Terra

Published

on

Como um sol tempestuoso poderia ter começado a vida na Terra

Um estudo recente indica que os ingredientes básicos para a vida na Terra podem ter se originado de erupções solares. A pesquisa mostrou que a colisão das moléculas do sol com os gases na atmosfera primordial da Terra poderia produzir aminoácidos e ácidos carboxílicos, que são os blocos de construção das proteínas e da vida orgânica. Usando dados da missão Kepler da NASA, os pesquisadores sugeriram que, durante sua fase inicial de superflare, partículas energéticas do sol interagiam regularmente com nossa atmosfera, desencadeando reações químicas fundamentais. As iterações experimentais indicaram que as moléculas do sol parecem ser uma fonte de energia mais eficiente do que o raio para a síntese de aminoácidos e ácidos carboxílicos. Crédito: NASA/Goddard Space Flight Center

Um novo estudo postula que os primeiros blocos de construção da vida na Terra, ou seja,[{” attribute=””>amino acids and carboxylic acids, may have been formed due to solar eruptions. The research suggests that energetic particles from the sun during its early stages, colliding with Earth’s primitive atmosphere, could have efficiently catalyzed essential chemical reactions, thus challenging the traditional “warm little pond” theory.

The first building blocks of life on Earth may have formed thanks to eruptions from our Sun, a new study finds.

A series of chemical experiments show how solar particles, colliding with gases in Earth’s early atmosphere, can form amino acids and carboxylic acids, the basic building blocks of proteins and organic life. The findings were published in the journal Life.

To understand the origins of life, many scientists try to explain how amino acids, the raw materials from which proteins and all cellular life, were formed. The best-known proposal originated in the late 1800s as scientists speculated that life might have begun in a “warm little pond”: A soup of chemicals, energized by lightning, heat, and other energy sources, that could mix together in concentrated amounts to form organic molecules.

Early Earth Astrobiology Artist Concept

Artist’s concept of Early Earth. Credit: NASA

In 1953, Stanley Miller of the University of Chicago tried to recreate these primordial conditions in the lab. Miller filled a closed chamber with methane, ammonia, water, and molecular hydrogen – gases thought to be prevalent in Earth’s early atmosphere – and repeatedly ignited an electrical spark to simulate lightning. A week later, Miller and his graduate advisor Harold Urey analyzed the chamber’s contents and found that 20 different amino acids had formed.

“That was a big revelation,” said Vladimir Airapetian, a stellar astrophysicist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and coauthor of the new paper. “From the basic components of early Earth’s atmosphere, you can synthesize these complex organic molecules.”

But the last 70 years have complicated this interpretation. Scientists now believe ammonia (NH3) and methane (CH4) were far less abundant; instead, Earth’s air was filled with carbon dioxide (CO2) and molecular nitrogen (N2), which require more energy to break down. These gases can still yield amino acids, but in greatly reduced quantities.

Seeking alternative energy sources, some scientists pointed to shockwaves from incoming meteors. Others cited solar ultraviolet radiation. Airapetian, using data from NASA’s Kepler mission, pointed to a new idea: energetic particles from our Sun.

Kepler observed far-off stars at different stages in their lifecycle, but its data provides hints about our Sun’s past. In 2016, Airapetian published a study suggesting that during Earth’s first 100 million years, the Sun was about 30% dimmer. But solar “superflares” – powerful eruptions we only see once every 100 years or so today – would have erupted once every 3-10 days. These superflares launch near-light speed particles that would regularly collide with our atmosphere, kickstarting chemical reactions.


A energia do nosso jovem Sol, há 4 bilhões de anos, ajudou a criar moléculas na atmosfera da Terra que lhes permitiram aquecer o suficiente para abrigar a vida. Crédito: Goddard Space Flight Center da NASA/Jenna Duberstein

“Assim que publiquei o artigo, uma equipe da Yokohama National University entrou em contato comigo do Japão”, disse Airapetian.

O Dr. Kobayashi, professor de química lá, passou os últimos 30 anos estudando a química dos prebióticos. Ele estava tentando entender como os raios cósmicos galácticos – partículas de fora do nosso sistema solar – poderiam ter afetado a atmosfera da Terra primitiva. “Os raios cósmicos galácticos são ignorados pela maioria dos pesquisadores porque requerem equipamentos especializados, como aceleradores de partículas”, disse Kobayashi. “Tive a sorte de ter acesso a vários deles perto das nossas instalações.” Pequenas modificações na configuração experimental de Kobayashi poderiam testar as ideias de Airapetian.

Airapetian e Kobayashi e seus colaboradores criaram uma mistura de gases que corresponde à atmosfera da Terra primitiva como a entendemos hoje. Eles coletaram dióxido de carbono, nitrogênio molecular, água e uma quantidade variável de metano. (A proporção de metano na atmosfera da Terra primitiva é incerta, mas acredita-se que seja baixa). comparação.

Enquanto o teor de metano era superior a 0,5%, as misturas liberadas pelos prótons (as partículas de energia solar) produziam quantidades detectáveis ​​de aminoácidos e ácidos carboxílicos. Mas as descargas de faíscas (relâmpagos) requerem uma concentração de metano de cerca de 15% antes que qualquer aminoácido possa se formar.

“Mesmo quando 15% de metano está presente, a taxa de produção de aminoácidos por raios é um milhão de vezes menor do que a produção de prótons”, acrescentou Airapetian. Os prótons também tendem a produzir mais ácidos carboxílicos (compradores de aminoácidos) do que aqueles inflamados por descarga de faísca.

Detalhe da erupção solar

Close de uma erupção vulcânica solar, incluindo uma erupção solar, ejeção de massa coronal e evento de ejeção de massa solar. Crédito: Goddard Space Flight Center da NASA

Tudo o mais sendo igual, as partículas solares parecem ser uma fonte de energia mais eficiente do que os raios. Tudo o mais provavelmente não era igual, sugeriu Airapetian. Miller e Urey levantaram a hipótese de que os raios eram tão comuns na época do “pequeno lago quente” quanto hoje. Mas o raio, que vem de nuvens de tempestade formadas pelo ar quente ascendente, teria sido cerca de 30% mais raro sob a luz solar fraca.

“Durante condições frias, você nunca tem raios, e a Terra primitiva estava sob um sol muito fraco”, disse Airapetian. “Isso não significa que não possa vir de um raio, mas o raio parece menos provável agora, e as partículas solares parecem mais prováveis”.

Esses experimentos sugerem que nosso jovem e enérgico Sol poderia ter induzido precursores da vida mais facilmente, e talvez antes, do que se supunha anteriormente.

Referência: “Formation of Amino Acids and Carboxylic Acids in the Weak Reduction of Planetary Atmospheres by Solar Particles from the Young Sun” por Kensei Kobayashi Jun-ichi Ise, Ryuhei Aoki, Mei Kinoshita, Koki Naito, Takumi Udo, Bhagawati Konivore Takahashi, Hiromi Shibata, Hajime Mita, Hitoshi Fukuda, Yoshiyuki Oguri Kimitaka Kawamura, Yoko Kibukawa e Vladimir S. Irpetian, 28 de abril de 2023 Disponível aqui. vida.
DOI: 10.3390/life13051103

READ  Superinfecção COVID: Por quanto tempo as pessoas vacinadas se tornam contagiosas?
Continue Reading
Click to comment

Leave a Reply

O seu endereço de e-mail não será publicado. Campos obrigatórios são marcados com *

science

Convertendo matéria escura invisível em luz visível

Published

on

Convertendo matéria escura invisível em luz visível

Aglomerado de galáxias, à esquerda, com um anel de matéria escura visível, à direita. Crédito da imagem: NASA, ESA, MJ Jee e H. Ford (Universidade Johns Hopkins)

As explorações da matéria escura estão a avançar utilizando novas técnicas experimentais concebidas para detectar eixos e aproveitando a tecnologia avançada e a colaboração interdisciplinar para descobrir os segredos desta componente indescritível do universo.

Um fantasma assombra nosso mundo. Isso é conhecido na astronomia e na cosmologia há décadas. Notas eu sugiro cerca de 85% Toda a matéria do universo é misteriosa e invisível. Essas duas qualidades estão refletidas em seu nome: matéria escura.

Vários experimentos Eles pretendem descobrir os seus ingredientes, mas apesar de décadas de investigação, os cientistas não conseguiram. agora Nossa nova experiênciaem construção em Universidade de Yale Nos Estados Unidos, oferece uma nova tática.

A matéria escura existe no universo desde o início dos tempos. Junte estrelas e galáxias. Invisível e sutil, não parece interagir com a luz ou qualquer outro tipo de matéria. Na verdade, deveria ser algo completamente novo.

O Modelo Padrão da física de partículas está incompleto e isso é um problema. Temos que procurar o novo Partículas fundamentais. Surpreendentemente, as mesmas falhas do modelo padrão dão pistas preciosas sobre onde podem estar escondidas.

O problema com o nêutron

Veja o nêutron, por exemplo. Forma o núcleo atômico com o próton. Embora geralmente neutra, a teoria afirma que é composta por três partículas carregadas chamadas quarks. Por esta razão, esperamos que algumas partes do nêutron tenham carga positiva e outras negativamente – o que significa que ele teve o que os físicos chamam de momento de dipolo elétrico.

Até agora, Muitas tentativas Medi-lo levou à mesma conclusão: é pequeno demais para ser descoberto. Outro fantasma. Não estamos a falar de deficiências nos instrumentos, mas sim de um factor que deve ser inferior a uma parte em dez mil milhões. É tão pequeno que as pessoas se perguntam se poderia ser completamente zero.

READ  Como ver a aurora boreal em Connecticut neste fim de semana - NBC Connecticut

Mas na física, o zero matemático é sempre uma afirmação forte. No final da década de 1970, os físicos de partículas Roberto Picci e Helen Coyne (e mais tarde Frank Wilczek e Steven Weinberg) tentaram descobrir Compreendendo a teoria e as evidências.

Eles sugeriram que o parâmetro provavelmente não é zero. Em vez disso, é uma quantidade dinâmica que perde lentamente a sua carga e depois evolui para zero. a grande explosão. Cálculos teóricos mostram que, se tal evento ocorreu, deve ter deixado para trás um grande número de partículas de luz ilusórias.

Eles são chamados de “áxions” em homenagem a uma marca de detergente porque podem “resolver” o problema dos nêutrons. E ainda mais. Se os áxions foram criados no início do universo, eles existem desde então. Mais importante ainda, as suas propriedades definem todos os elementos esperados da matéria escura. Por estas razões, os hubs tornaram-se um dos Partículas candidatas preferidas Para matéria escura.

Os áxions interagirão fracamente com outras partículas. No entanto, isso significa que eles ainda interagirão bastante. Eixos invisíveis podem se transformar em partículas comuns, incluindo – ironicamente – fótons, a essência da luz. Isto pode acontecer sob certas condições, como a presença de um campo magnético. Esta é uma dádiva de Deus para os físicos experimentais.

Design experimental

Muitos experimentos Eles tentam conjurar o fantasma de Axion em um ambiente de laboratório controlado. Alguns deles visam converter a luz em eixo, por exemplo, e depois transformar o eixo em luz do outro lado da parede.

Atualmente, a abordagem mais sensível tem como alvo o halo de matéria escura que permeia a galáxia (e, portanto, a Terra) usando um dispositivo chamado coroa. É uma cavidade condutora imersa em um forte campo magnético. O primeiro capta a matéria escura que nos rodeia (presumindo que sejam axônios), enquanto o segundo a faz se transformar em luz. O resultado é um sinal eletromagnético que aparece dentro da cavidade, oscilando em uma frequência característica dependendo da massa do áxion.

READ  Um meteoro atravessa o teto e cai na cama da mulher

O sistema funciona como um receptor de rádio. Deve ser devidamente ajustado para interceptar a frequência de interesse. Na prática, as dimensões da cavidade são alteradas para acomodar diferentes frequências características. Se as frequências do áxion e da cavidade não corresponderem, é como sintonizar o rádio no canal errado.

Um poderoso ímã supercondutor foi transferido para a Universidade de Yale

O poderoso ímã é transportado para o laboratório da Universidade de Yale. Crédito: Universidade de Yale

Infelizmente, o canal que procuramos não pode ser previsto com antecedência. Não temos escolha a não ser varrer todas as frequências possíveis. É como selecionar uma estação de rádio em um mar de ruído branco – uma agulha em um palheiro – com um rádio antigo que precisa ser aumentado ou menor toda vez que giramos o botão de frequência.

Contudo, estes não são os únicos desafios. Cosmologia refere-se a Dezenas de gigahertz Como a última fronteira promissora da busca por axions. Como frequências mais altas requerem cavidades menores, a exploração dessa região exigiria cavidades muito pequenas para capturar uma quantidade significativa de sinal.

Novos experimentos tentam encontrar caminhos alternativos. nosso Experimento de plasmascópio longitudinal (Alpha). Utiliza um novo conceito de cavitação baseado em metamateriais.

Os metamateriais são materiais compósitos com propriedades universais que diferem dos seus componentes – são mais do que a soma das suas partes. Uma cavidade preenchida com hastes condutoras tem uma frequência característica como se fosse um milhão de vezes menor, enquanto seu tamanho quase não muda. É exatamente disso que precisamos. Além disso, as barras oferecem um sistema de ajuste integrado e fácil de ajustar.

Atualmente estamos construindo a configuração, que estará pronta para receber dados em alguns anos. A tecnologia é promissora. Seu desenvolvimento foi resultado da colaboração entre físicos do estado sólido, engenheiros elétricos, físicos de partículas e até matemáticos.

READ  Lançamento puro Artemis 1

Embora rebuscados, os axions estão alimentando um progresso que nenhum espectro será capaz de eliminar.

Escrito por Andrea Gallo Russo, Pós-Doutorado em Física, Universidade de Estocolmo.

Adaptado de artigo publicado originalmente em Conversação.Conversação

Continue Reading

science

A 30ª missão de carga Dragon da SpaceX sai da Estação Espacial Internacional e pousa na Terra

Published

on

A 30ª missão de carga Dragon da SpaceX sai da Estação Espacial Internacional e pousa na Terra

A 30ª nave de carga robótica Dragon da SpaceX retornou ao seu lar na Terra.

A espaçonave Dragon partiu da Estação Espacial Internacional (ISS) hoje (28 de abril) às 13h10 EDT (1710 GMT), enquanto ambas as espaçonaves sobrevoavam a Tailândia. Era uma noite tropical naquela área, então não havia boas fotos do momento da atracação.

Continue Reading

science

Estudo diz que estilo de vida saudável pode compensar a genética em 60% e acrescentar cinco anos à vida | Pesquisa médica

Published

on

Estudo diz que estilo de vida saudável pode compensar a genética em 60% e acrescentar cinco anos à vida |  Pesquisa médica

Um estilo de vida saudável pode compensar a influência dos genes em mais de 60% e acrescentar mais cinco anos à sua vida, de acordo com um estudo que é o primeiro do género.

Está bem estabelecido que algumas pessoas têm uma predisposição genética para uma vida mais curta. Sabe-se também que fatores de estilo de vida, especificamente tabagismo, consumo de álcool, dieta alimentar e atividade física, podem ter impacto na longevidade.

No entanto, até agora não houve pesquisas para compreender como um estilo de vida saudável pode equilibrar os genes.

Os resultados de vários estudos de longo prazo indicam que um estilo de vida saudável pode compensar os efeitos dos genes que encurtam a vida em 62% e acrescentar até cinco anos à sua vida. E os resultados foram Publicado no BMJ Medicina Baseada em Evidências.

Os pesquisadores concluíram: “Este estudo demonstra o papel fundamental de um estilo de vida saudável na mitigação do efeito de fatores genéticos na redução da expectativa de vida”. “As políticas de saúde pública para melhorar estilos de vida saudáveis ​​servirão como complementos poderosos aos cuidados de saúde tradicionais e mitigarão o impacto dos factores genéticos na esperança de vida humana.”

O estudo incluiu 353.742 pessoas do Biobank do Reino Unido e mostrou que aqueles com alto risco genético para vidas mais curtas tinham um risco 21% maior de morte prematura em comparação com aqueles com baixo risco genético, independentemente do estilo de vida.

Entretanto, investigadores da Escola de Medicina da Universidade de Zhejiang, na China, e da Universidade de Edimburgo descobriram que as pessoas que levam estilos de vida pouco saudáveis ​​têm uma probabilidade 78% maior de morte prematura, independentemente do seu risco genético.

READ  'Eu não podia acreditar que entendi': trabalhador do Six Flags suspeitou que estava com varicela no trabalho - WSB-TV Channel 2

O estudo acrescentou que seguir um estilo de vida pouco saudável e genes com menor expectativa de vida aumenta o risco de morte prematura em mais que o dobro em comparação com pessoas com genes mais afortunados e estilos de vida saudáveis.

No entanto, os pesquisadores descobriram que as pessoas pareciam ter um certo grau de controle sobre o que acontecia. Os pesquisadores descobriram que o risco genético de redução da expectativa de vida ou morte precoce pode ser compensado por um estilo de vida adequado em cerca de 62%.

“Os participantes com alto risco genético poderiam prolongar aproximadamente 5,22 anos de expectativa de vida aos 40 anos com um estilo de vida adequado”, escreveram.

Acontece que a “combinação ideal de estilo de vida” para uma vida mais longa é “nunca fumar, praticar atividade física regular, dormir adequadamente e ter uma dieta saudável”.

O estudo acompanhou pessoas por uma média de 13 anos, durante os quais ocorreram 24.239 mortes. Os indivíduos foram agrupados em três categorias de idade geneticamente determinadas, incluindo longo (20,1%), médio (60,1%) e curto (19,8%), e três categorias de estilo de vida incluindo favorável (23,1%), intermediário (55,6%) e desfavorável. (21,3%). ).

Os pesquisadores usaram pontuações de risco poligênico para observar múltiplas variantes genéticas e chegar à predisposição genética geral de uma pessoa para uma vida mais longa ou mais curta. Outros resultados analisaram se as pessoas fumavam, bebiam álcool, faziam exercício, a forma do corpo, a dieta saudável e o sono.

Matt Lambert, diretor de informação de saúde do Fundo Mundial de Pesquisa do Câncer, disse: “Esta nova pesquisa mostra que, apesar dos fatores genéticos, viver um estilo de vida saudável, incluindo uma dieta equilibrada e permanecer ativo, pode nos ajudar a viver mais”.

READ  Como ver a aurora boreal em Connecticut neste fim de semana - NBC Connecticut
Continue Reading

Trending

Copyright © 2023