Connect with us

science

Um enorme buraco negro foi descoberto a menos de 2.000 anos-luz da Terra

Published

on

Um enorme buraco negro foi descoberto a menos de 2.000 anos-luz da Terra

Os astrônomos descobriram o buraco negro estelar mais massivo conhecido na Via Láctea depois de descobrirem uma oscilação incomum no espaço. Tem cerca de 33 vezes a massa do nosso Sol e está localizado a 1.926 anos-luz de distância, na constelação de Áquila, o que o torna o segundo buraco negro conhecido mais próximo da Terra. O buraco negro mais próximo é Gaia BH1, que está localizado a cerca de 1.500 anos-luz de distância e tem uma massa de aproximadamente 10 vezes a massa do nosso Sol. Os astrônomos descobriram o buraco negro enquanto vasculhavam observações feitas pelo telescópio espacial Gaia da Agência Espacial Europeia em busca de um buraco negro. Divulgar dados que chegam à comunidade científica. Os investigadores não esperavam encontrar nada, mas um movimento estranho — causado pela influência gravitacional de Gaia BH3 numa companheira próxima — chamou a sua atenção. Muitos buracos negros “adormecidos” não têm um companheiro próximo o suficiente para se alimentar, por isso são difíceis de detectar e não geram luz. Mas outros buracos negros estelares extraem material de estrelas companheiras, e esta troca de matéria liberta raios-X brilhantes que podem ser observados com telescópios. O movimento oscilante de uma antiga estrela gigante na constelação de Áquila revelou que ela estava em uma dança orbital com uma estrela de buraco negro inativa, o terceiro buraco negro inativo observado por Gaia. Os investigadores usaram o Very Large Telescope do Observatório Europeu do Sul, no deserto do Atacama, no Chile, e outros observatórios terrestres para confirmar a massa de Gaia BH3, e o seu estudo também apresentou novas pistas sobre como estes buracos negros massivos aparecem. Os resultados foram publicados na terça-feira na revista Astronomy and Astrophysics. “Ninguém esperaria encontrar um buraco negro de grande massa à espreita nas proximidades e que ainda não foi descoberto”, disse Pascual Panozzo, principal autor do estudo e astrônomo do Observatório de Paris, parte do Observatório de Paris, parte do Observatório de Paris. Observatório de Paris. Centro Nacional de Investigação Científica e membro da Colaboração Gaia, em comunicado. “Este é o tipo de descoberta que você faz uma vez na vida de pesquisa.” Segredos de estrelas antigas O título do buraco negro mais massivo da nossa galáxia sempre remontará a Sagitário A*, o buraco negro supermassivo no centro da Via Láctea. Bem, sua massa é cerca de 4 milhões de vezes a massa do Sol, mas isso é porque é um buraco negro supermassivo, não um buraco negro estelar. O processo pelo qual os buracos negros supermassivos se formam não é bem compreendido, mas uma teoria sugere que isso ocorre quando nuvens cósmicas massivas entram em colapso. Buracos negros estelares se formam quando estrelas massivas morrem. Portanto, Gaia BH3 é o buraco negro mais massivo da nossa galáxia que se formou a partir da morte de uma estrela massiva. A massa dos buracos negros estelares observados na Via Láctea é cerca de 10 vezes a massa do Sol, em média. Até a descoberta de Gaia BH3, o maior buraco negro estelar conhecido na nossa galáxia era Cygnus X-1, que tem uma massa de 21 vezes a massa do Sol. Embora Gaia BH3 seja uma descoberta excepcional em nossa galáxia para os padrões dos astrônomos, ela é semelhante em massa a objetos em galáxias muito, muito distantes. Os cientistas acreditam que buracos negros estelares com massas como Gaia BH3 se formaram quando estrelas pobres em metais entraram em colapso. Pensa-se que estas estrelas, que têm hidrogénio e hélio como os seus elementos mais pesados, perdem menos massa ao longo das suas vidas, pelo que, em última análise, têm mais material que pode dar origem a um buraco negro de grande massa. Mas os astrónomos não conseguiram encontrar provas que ligassem diretamente buracos negros de grande massa a estrelas pobres em metais até encontrarem Gaia BH3. Estrelas duplas tendem a ter composição semelhante, disseram os autores do estudo. De acordo com as expectativas, os pesquisadores descobriram que a estrela que orbita Gaia BH3 era pobre em metais, o que significa que a estrela que formou Gaia BH3 era provavelmente a mesma. “Em estrelas antigas e pobres em metais na galáxia”, disse Elisabetta Cavao, coautora do estudo e membro da colaboração Gaia no Observatório de Paris, em comunicado. A estrela que orbita Gaia BH3 provavelmente se formou nos primeiros dois bilhões de anos após o Big Bang que criou o universo. O universo há 13,8 bilhões de anos. O caminho da estrela, que se move na direção oposta a muitas estrelas no disco galáctico da Via Láctea, indica que fazia parte de uma pequena galáxia que se fundiu com a Via Láctea há mais de 8 mil milhões de anos. Agora, a equipe espera investigar. Poderia permitir que outros astrónomos estudassem o buraco negro supermassivo e revelassem mais dos seus segredos sem ter de esperar pelo resto dos dados de Gaia, com lançamento previsto para o final de 2025. “É um grande problema”, disse Carol Mundell, diretora científica da ESA. em um comunicado. “As suas descobertas vão muito além do objetivo original da missão, que era criar um mapa multidimensional extremamente preciso de mais de mil milhões de estrelas em toda a Via Láctea.”

READ  Esta é a idade em que sua capacidade de andar e falar começa a diminuir: estude

Astrônomos descobriram o maior buraco negro estelar conhecido na Via Láctea depois de observarem uma oscilação incomum no espaço.

Vídeo relacionado acima: Lixo espacial cai no telhado da casa da família, diz NASA

O chamado “gigante adormecido”, denominado Gaia BH3, tem uma massa equivalente a cerca de 33 vezes a do nosso Sol e está localizado a 1.926 anos-luz de distância, na constelação de Áquila, o que o torna o segundo buraco negro conhecido mais próximo da Terra. . O buraco negro mais próximo é Gaia BH1, que está localizado a cerca de 1.500 anos-luz de distância e tem uma massa de aproximadamente 10 vezes a massa do nosso Sol.

Os astrônomos descobriram o buraco negro enquanto vasculhavam as observações feitas pelo telescópio espacial Gaia da Agência Espacial Europeia, a fim de divulgar os próximos dados para a comunidade científica. Os investigadores não esperavam encontrar nada, mas um movimento estranho — causado pela influência gravitacional de Gaia BH3 numa companheira próxima — chamou a sua atenção.

Muitos buracos negros “adormecidos” não têm um companheiro próximo o suficiente para se alimentar, por isso são difíceis de detectar e não geram luz. Mas outros buracos negros estelares extraem material de estrelas companheiras, e esta troca de matéria liberta raios-X brilhantes que podem ser observados com telescópios.

O movimento oscilante de uma antiga estrela gigante na constelação de Áquila revelou que ela estava em uma dança orbital com um buraco negro adormecido, o terceiro buraco negro adormecido observado por Gaia.

Os investigadores usaram o Very Large Telescope do Observatório Europeu do Sul, no deserto do Atacama, no Chile, e outros observatórios terrestres para confirmar a massa de Gaia BH3, e o seu estudo também forneceu novas pistas sobre como surgem estes buracos negros massivos. Os resultados apareceram terça-feira no jornal Astronomia e astrofísica.

READ  O Telescópio Webb captura uma imagem impressionante do planeta Urano

“Ninguém esperaria encontrar um buraco negro de grande massa à espreita nas proximidades, e ainda não foi descoberto”, disse o principal autor do estudo, Pasquale Panozzo, astrônomo do Observatório de Paris, parte do Centro Nacional Francês de Pesquisa Científica e um membro da colaboração Gaia. Na situação atual. “Este é o tipo de descoberta que você faz uma vez na vida de pesquisa.”

M. Kornmesser/ESO via CNN Newsource

Existem três buracos negros estelares em nossa galáxia, Gaia BH1, Cygnus X-1 e Gaia BH3, com massas de 10, 21 e 33 vezes a massa do Sol, respectivamente.

Segredos de estrelas antigas

O título de buraco negro mais massivo da nossa galáxia sempre remontará a Sagitário A*, o buraco negro supermassivo no centro da Via Láctea, que tem uma massa de cerca de 4 milhões de vezes a massa do Sol, mas isso é porque é um buraco negro supermassivo. Um buraco negro supermassivo, não um buraco negro estelar.

O processo pelo qual os buracos negros supermassivos se formam não é bem compreendido, mas uma teoria sugere que isso acontece Quando enormes nuvens cósmicas entram em colapso. Buracos negros estelares se formam quando estrelas massivas morrem. Assim, Gaia BH3 é o buraco negro mais massivo da nossa galáxia, que se formou como resultado da morte de uma estrela massiva.

A massa dos buracos negros estelares observados na Via Láctea é cerca de 10 vezes a massa do Sol, em média. Até a descoberta de Gaia BH3, o maior buraco negro estelar conhecido na nossa galáxia era Cygnus X-1, que tem uma massa de 21 vezes a massa do Sol. Embora Gaia BH3 seja uma descoberta excepcional em nossa galáxia para os padrões dos astrônomos, ela é semelhante em massa a objetos em galáxias muito, muito distantes.

READ  A nova imagem de retrato da Via Láctea captura mais de 3 bilhões de estrelas

Os cientistas acreditam que buracos negros estelares com massas como Gaia BH3 se formaram quando estrelas pobres em metais entraram em colapso. Pensa-se que estas estrelas, que têm hidrogénio e hélio como os seus elementos mais pesados, perdem menos massa ao longo das suas vidas, pelo que, em última análise, contêm mais material que pode dar origem a um buraco negro de grande massa.

Mas os astrónomos não conseguiram encontrar provas que ligassem diretamente buracos negros de grande massa a estrelas pobres em metais até encontrarem Gaia BH3.

Estrelas duplas tendem a ter composição semelhante, disseram os autores do estudo. De acordo com as expectativas, os pesquisadores descobriram que a estrela que orbita Gaia BH3 era pobre em metais, o que significa que a estrela que formou Gaia BH3 era provavelmente a mesma.

“O que me surpreende é que a composição química da companheira é semelhante à que encontramos em estrelas antigas e pobres em metais da galáxia”, disse Elisabetta Cavao, coautora do estudo e membro da colaboração Gaia no Observatório de Paris. , disse em um comunicado.

A estrela que orbita Gaia BH3 provavelmente formou-se nos primeiros 2 mil milhões de anos após o Big Bang ter criado o Universo, há 13,8 mil milhões de anos. O caminho da estrela, que se move na direção oposta a muitas estrelas no disco galáctico da Via Láctea, indica que fazia parte de uma pequena galáxia que se fundiu com a Via Láctea há mais de 8 mil milhões de anos.

Agora, a equipa espera que a investigação permita que outros astrónomos estudem o enorme buraco negro e revelem mais dos seus segredos sem ter de esperar pelo resto dos dados de Gaia, com lançamento previsto para o final de 2025.

“É impressionante ver o impacto transformador que Gaia está a ter na astronomia e na astrofísica”, disse Carol Mundell, diretora científica da ESA, num comunicado. “As suas descobertas vão muito além do objetivo original da missão, que era criar um mapa multidimensional extremamente preciso de mais de mil milhões de estrelas em toda a Via Láctea.”

Continue Reading
Click to comment

Leave a Reply

O seu endereço de e-mail não será publicado. Campos obrigatórios são marcados com *

science

Cientistas estão se preparando para tempestades solares em Marte

Published

on

Cientistas estão se preparando para tempestades solares em Marte

Esta ejeção de massa coronal, capturada pelo Solar Dynamics Observatory da NASA, explodiu no Sol em 31 de agosto de 2012, viajando a mais de 1.400 quilômetros por segundo e enviando radiação para as profundezas do espaço. O campo magnético da Terra protege-a da radiação de eventos solares como este, enquanto Marte carece deste tipo de protecção. Fonte: NASA/SDO

O Sol estará mais ativo este ano, proporcionando uma rara oportunidade de estudar como as tempestades solares e a radiação afetarão os futuros astronautas no Planeta Vermelho.

Nos próximos meses, dois dos NASAde Marte A espaçonave terá uma oportunidade sem precedentes de estudar como as erupções solares – explosões gigantescas na superfície do Sol – afetam futuros robôs e astronautas no Planeta Vermelho.

Isso ocorre porque o Sol está entrando em um período de pico de atividade denominado máximo solar, algo que acontece aproximadamente a cada 11 anos. Durante o máximo solar, o Sol é particularmente propenso a explosões de fogo em uma variedade de formas – incluindo… Erupções solares E Ejeção de massa coronal – Que libera radiação nas profundezas do espaço. Quando uma série desses eventos solares irrompe, isso é chamado de tempestade solar.


Saiba como o rover MAVEN da NASA e o rover Curiosity da agência estudam as erupções solares e a radiação em Marte durante o máximo solar – o período em que o Sol está mais ativo. Crédito: NASA/Laboratório de Propulsão a Jato– Caltech/GSFC/SDO/MSSS/Universidade do Colorado

O campo magnético da Terra protege em grande parte o nosso planeta natal dos efeitos destas tempestades. Mas Marte perdeu o seu campo magnético global há muito tempo, tornando o Planeta Vermelho mais vulnerável às partículas energéticas do Sol. Quão intensa é a atividade solar em Marte? Os pesquisadores esperam que o atual máximo solar lhes dê a chance de descobrir. Antes de enviar humanos para lá, as agências espaciais precisam determinar, entre muitos outros detalhes, que tipo de proteção radiológica os astronautas necessitarão.

READ  Complexidade inesperada das estruturas da misteriosa Via Láctea

“Para os humanos e as origens marcianas, não temos uma compreensão sólida do impacto da radiação durante a atividade solar”, disse Shannon Curry, do Laboratório de Física Atmosférica e Espacial da Universidade do Colorado em Boulder. Curry é o investigador principal do orbitador MAVEN (Mars Atmospheric and Volatile Evolution) da NASA, operado pelo Goddard Space Flight Center da NASA em Greenbelt, Maryland. “Na verdade, gostaria de ver um ‘grande evento’ em Marte este ano – um grande evento que possamos estudar para compreender melhor a radiação solar antes dos astronautas irem a Marte.”

Detector de avaliação de radiação do rover Curiosity

O detector de avaliação de radiação no rover Curiosity da NASA é destacado nesta imagem anotada do Mastcam do rover. Os cientistas da RAD estão entusiasmados em usar o instrumento para estudar a radiação em Marte durante o máximo solar. Fonte da imagem: NASA/JPL-Caltech/MSSS

Meça a altura e a queda

MAVEN monitora radiação, partículas solares e muito mais acima da superfície de Marte. A fina atmosfera de um planeta pode afetar a densidade das moléculas no momento em que atingem a superfície, e é aí que a sonda Curiosity da NASA entra em ação. Dados do detector de avaliação de radiação do Curiosity, ou RadAjudou os cientistas a compreender como a radiação decompõe as moléculas de carbono na superfície, um processo que pode afetar a preservação de sinais de vida microbiana antiga. A ferramenta também deu à NASA uma ideia de quanta proteção os astronautas poderiam esperar da radiação, usando cavernas, tubos de lava ou faces de penhascos para proteção.

Quando ocorre um evento solar, os cientistas observam a quantidade de partículas solares e quão ativas elas são.

Atmosfera de Marte e Evolução Volátil da NASA (MAVEN)

Este conceito artístico retrata a atmosfera marciana e a espaçonave MAVEN da NASA perto de Marte. Crédito: NASA/GSFC

“Poderíamos ter 1 milhão de partículas de baixa energia ou 10 partículas de energia muito alta”, disse o investigador principal da RAD, Don Hasler, do escritório do Southwest Research Institute em Boulder, Colorado. “Embora os instrumentos MAVEN sejam mais sensíveis a instrumentos de baixa energia, o RAD é o único instrumento capaz de ver instrumentos de alta energia que podem cruzar a atmosfera até a superfície, onde estarão os astronautas.”

READ  Marcando o 4º aniversário da pandemia de Covid

Quando o MAVEN detecta uma grande explosão solar, a equipe do orbitador informa à equipe do Curiosity para saber sobre isso para que possam monitorar as mudanças nos dados RAD. As duas missões também podem compilar uma série temporal que mede as mudanças até meio segundo quando as partículas atingem a atmosfera marciana, interagem com ela e, eventualmente, atingem a superfície.

A missão MAVEN também conduz um sistema de alerta precoce que permite que outras equipas de naves espaciais de Marte saibam quando os níveis de radiação começam a subir. O sistema de alerta permite que as missões desliguem dispositivos que podem ser vulneráveis ​​a explosões solares, que podem interferir na eletrônica e nas comunicações de rádio.

Água perdida

Além de ajudar a manter os astronautas e as naves espaciais seguros, estudar o máximo solar também pode fornecer informações sobre a razão pela qual Marte mudou de um mundo quente e húmido, semelhante à Terra, há milhares de milhões de anos, para um deserto congelado hoje.

O planeta está em um ponto de sua órbita quando está mais próximo do Sol, aquecendo a atmosfera. Isso pode causar tempestades de poeira crescentes que cobrem a superfície. Às vezes as tempestades se fundem, tornando-se globais (veja a imagem abaixo).

Animação de uma tempestade global de poeira em Marte

Marte antes e depois da tempestade de poeira: filmes lado a lado mostram como a tempestade de poeira global de 2018 cobriu o planeta vermelho, graças à câmera Mars Color Imager (MARCI) a bordo do Mars Reconnaissance Orbiter da NASA. Esta tempestade global de poeira fez com que a espaçonave da NASA perdesse contato com a Terra. Fonte da imagem: NASA/JPL-Caltech/MSSS

Embora reste pouca água em Marte – principalmente gelo sob a superfície e nos pólos – parte dela ainda circula como vapor na atmosfera. Os cientistas questionam-se se as tempestades globais de poeira ajudam a expulsar este vapor de água, elevando-o bem acima do planeta, onde a atmosfera é destruída durante as tempestades solares. Uma teoria é que este processo, repetido várias vezes ao longo de eras, pode explicar como Marte deixou de ter lagos e rios para ser hoje praticamente sem água.

READ  O asteróide 'Dog-Bone' é mais estranho do que imaginávamos

Se uma tempestade global de poeira ocorresse ao mesmo tempo que uma tempestade solar, seria uma oportunidade para testar esta teoria. Os cientistas estão particularmente entusiasmados porque este máximo solar ocorre no início da estação mais poeirenta de Marte, mas também sabem que uma tempestade de poeira global é rara.

Mais sobre missões

O Goddard Space Flight Center da NASA em Greenbelt, Maryland, gerencia a missão MAVEN. A Lockheed Martin Space construiu a espaçonave e é responsável pelas operações da missão. JPL fornece navegação e suporte de rede espacial profunda. O Laboratório de Física Atmosférica e Espacial da Universidade do Colorado Boulder é responsável pelo gerenciamento de operações científicas, divulgação pública e comunicações.

O Curiosity foi construído pelo Laboratório de Propulsão a Jato da NASA, operado pelo Instituto de Tecnologia da Califórnia em Pasadena, Califórnia. O JPL está liderando a missão em nome da Diretoria de Missões Científicas da NASA em Washington. A investigação RAD é apoiada pela Divisão de Heliofísica da NASA como parte do Heliophysics System Observatory (HSO) da NASA.

Continue Reading

science

Autópsia cerebral revela nova causa possível por trás da doença de Alzheimer: ScienceAlert

Published

on

Autópsia cerebral revela nova causa possível por trás da doença de Alzheimer: ScienceAlert

A análise do tecido cerebral humano revelou diferenças na forma como as células imunitárias se comportam nos cérebros de pessoas com doença de Alzheimer em comparação com cérebros saudáveis, sugerindo um potencial novo alvo terapêutico.

A descoberta foi feita por pesquisa liderada pela Universidade de Washington, publicada em agosto Células da micróglia No cérebro de pessoas com doença de Alzheimer Em um estado pró-inflamatório Muitas vezes, tornando-os menos vulneráveis ​​à protecção.

Microglia são células imunológicas que ajudam a manter nosso cérebro saudável, removendo resíduos e mantendo a função cerebral normal.

Em resposta à infecção ou para remover células mortas, estas formas elegantes e que mudam de forma podem tornar-se menos rotativas e mais móveis para engolir invasores e lixo. eles também Sinapses “podam” durante o desenvolvimentoo que ajuda a formar os circuitos que ajudam nosso cérebro a funcionar bem.

Não é certo qual o papel que desempenham na doença de Alzheimer, mas em pessoas com esta doença neurodegenerativa devastadora, algumas microglias respondem muito fortemente. Pode causar inflamação O que contribui para a morte das células cerebrais.

Infelizmente, os ensaios clínicos para Medicamentos anti-inflamatórios para a doença de Alzheimer não mostraram efeitos significativos.

Para aprofundar o papel da micróglia na doença de Alzheimer, os neurocientistas Katherine Prater e Kevin Green, da Universidade de Washington, juntamente com colegas de diversas instituições dos EUA, usaram amostras de autópsias cerebrais de doadores de pesquisa – 12 com doença de Alzheimer e 10 pessoas saudáveis ​​– para estudar a atividade da microglia do gene Small.

Usando um novo método de promoção Sequenciamento de RNA de fita simplesA equipe conseguiu identificar profundamente 10 populações diferentes de micróglia no tecido cerebral com base em seu conjunto único de expressão genética, que diz às células o que fazer.

READ  A nova imagem de retrato da Via Láctea captura mais de 3 bilhões de estrelas

TTrês grupos nunca haviam sido vistos antes e um deles era mais comum em pessoas com doença de Alzheimer. Este tipo de microglia contém genes que promovem inflamação e morte celular.

No geral, os investigadores descobriram que as populações de microglia nos cérebros das pessoas com doença de Alzheimer tinham maior probabilidade de estar num estado pró-inflamatório.

Isto significa que eram mais propensos a produzir moléculas inflamatórias que podem danificar as células cerebrais e possivelmente contribuir para o desenvolvimento da doença de Alzheimer.

Os tipos de microglia encontrados nos cérebros de pessoas com Alzheimer eram menos propensos a serem protetores, afetando a sua capacidade de puxar o peso, limpando células mortas e resíduos e promovendo o envelhecimento saudável do cérebro.

Micrografia de microglia (verde) de um cérebro com doença de Alzheimer. (Lexi Coquit/Laboratório de Neuroinflamação da Universidade de Wisconsin)

Os cientistas também acreditam que a microglia pode mudar de tipo ao longo do tempo. Portanto, não podemos simplesmente olhar para o cérebro de uma pessoa e dizer com certeza que tipo de micróglia ela possui; Acompanhar como as microglias mudam ao longo do tempo pode nos ajudar a entender como elas contribuem para a doença de Alzheimer.

“Neste momento, não podemos dizer se são as micróglias que estão a causar a doença ou se é a patologia que está a causar a mudança no comportamento destas micróglias.” Ele disse Prater.

Esta investigação ainda está numa fase inicial, mas avança a nossa compreensão sobre o papel destas células na doença de Alzheimer e sugere que algumas populações de microglia podem ser alvos de novos tratamentos.

A equipe espera que o seu trabalho leve ao desenvolvimento de novos tratamentos que possam melhorar a vida das pessoas com doença de Alzheimer.

“Agora que identificámos os perfis genéticos destas micróglias, podemos tentar descobrir exactamente o que fazem e, esperançosamente, identificar formas de mudar os seus comportamentos que possam contribuir para a doença de Alzheimer”, diz Prater. Ele disse.

READ  Cientistas descobriram uma substância estranha onde os elétrons ficam parados

“Se pudermos determinar o que eles estão fazendo, poderemos mudar seu comportamento com tratamentos que possam prevenir ou retardar esta doença.”

O estudo foi publicado em Natureza envelhecida.

Uma versão anterior deste artigo foi publicada em agosto de 2023.

Continue Reading

science

Convertendo matéria escura invisível em luz visível

Published

on

Convertendo matéria escura invisível em luz visível

Aglomerado de galáxias, à esquerda, com um anel de matéria escura visível, à direita. Crédito da imagem: NASA, ESA, MJ Jee e H. Ford (Universidade Johns Hopkins)

As explorações da matéria escura estão a avançar utilizando novas técnicas experimentais concebidas para detectar eixos e aproveitando a tecnologia avançada e a colaboração interdisciplinar para descobrir os segredos desta componente indescritível do universo.

Um fantasma assombra nosso mundo. Isso é conhecido na astronomia e na cosmologia há décadas. Notas eu sugiro cerca de 85% Toda a matéria do universo é misteriosa e invisível. Essas duas qualidades estão refletidas em seu nome: matéria escura.

Vários experimentos Eles pretendem descobrir os seus ingredientes, mas apesar de décadas de investigação, os cientistas não conseguiram. agora Nossa nova experiênciaem construção em Universidade de Yale Nos Estados Unidos, oferece uma nova tática.

A matéria escura existe no universo desde o início dos tempos. Junte estrelas e galáxias. Invisível e sutil, não parece interagir com a luz ou qualquer outro tipo de matéria. Na verdade, deveria ser algo completamente novo.

O Modelo Padrão da física de partículas está incompleto e isso é um problema. Temos que procurar o novo Partículas fundamentais. Surpreendentemente, as mesmas falhas do modelo padrão dão pistas preciosas sobre onde podem estar escondidas.

O problema com o nêutron

Veja o nêutron, por exemplo. Forma o núcleo atômico com o próton. Embora geralmente neutra, a teoria afirma que é composta por três partículas carregadas chamadas quarks. Por esta razão, esperamos que algumas partes do nêutron tenham carga positiva e outras negativamente – o que significa que ele teve o que os físicos chamam de momento de dipolo elétrico.

Até agora, Muitas tentativas Medi-lo levou à mesma conclusão: é pequeno demais para ser descoberto. Outro fantasma. Não estamos a falar de deficiências nos instrumentos, mas sim de um factor que deve ser inferior a uma parte em dez mil milhões. É tão pequeno que as pessoas se perguntam se poderia ser completamente zero.

READ  Complexidade inesperada das estruturas da misteriosa Via Láctea

Mas na física, o zero matemático é sempre uma afirmação forte. No final da década de 1970, os físicos de partículas Roberto Picci e Helen Coyne (e mais tarde Frank Wilczek e Steven Weinberg) tentaram descobrir Compreendendo a teoria e as evidências.

Eles sugeriram que o parâmetro provavelmente não é zero. Em vez disso, é uma quantidade dinâmica que perde lentamente a sua carga e depois evolui para zero. a grande explosão. Cálculos teóricos mostram que, se tal evento ocorreu, deve ter deixado para trás um grande número de partículas de luz ilusórias.

Eles são chamados de “áxions” em homenagem a uma marca de detergente porque podem “resolver” o problema dos nêutrons. E ainda mais. Se os áxions foram criados no início do universo, eles existem desde então. Mais importante ainda, as suas propriedades definem todos os elementos esperados da matéria escura. Por estas razões, os hubs tornaram-se um dos Partículas candidatas preferidas Para matéria escura.

Os áxions interagirão fracamente com outras partículas. No entanto, isso significa que eles ainda interagirão bastante. Eixos invisíveis podem se transformar em partículas comuns, incluindo – ironicamente – fótons, a essência da luz. Isto pode acontecer sob certas condições, como a presença de um campo magnético. Esta é uma dádiva de Deus para os físicos experimentais.

Design experimental

Muitos experimentos Eles tentam conjurar o fantasma de Axion em um ambiente de laboratório controlado. Alguns deles visam converter a luz em eixo, por exemplo, e depois transformar o eixo em luz do outro lado da parede.

Atualmente, a abordagem mais sensível tem como alvo o halo de matéria escura que permeia a galáxia (e, portanto, a Terra) usando um dispositivo chamado coroa. É uma cavidade condutora imersa em um forte campo magnético. O primeiro capta a matéria escura que nos rodeia (presumindo que sejam axônios), enquanto o segundo a faz se transformar em luz. O resultado é um sinal eletromagnético que aparece dentro da cavidade, oscilando em uma frequência característica dependendo da massa do áxion.

READ  A nova imagem de retrato da Via Láctea captura mais de 3 bilhões de estrelas

O sistema funciona como um receptor de rádio. Deve ser devidamente ajustado para interceptar a frequência de interesse. Na prática, as dimensões da cavidade são alteradas para acomodar diferentes frequências características. Se as frequências do áxion e da cavidade não corresponderem, é como sintonizar o rádio no canal errado.

Um poderoso ímã supercondutor foi transferido para a Universidade de Yale

O poderoso ímã é transportado para o laboratório da Universidade de Yale. Crédito: Universidade de Yale

Infelizmente, o canal que procuramos não pode ser previsto com antecedência. Não temos escolha a não ser varrer todas as frequências possíveis. É como selecionar uma estação de rádio em um mar de ruído branco – uma agulha em um palheiro – com um rádio antigo que precisa ser aumentado ou menor toda vez que giramos o botão de frequência.

Contudo, estes não são os únicos desafios. Cosmologia refere-se a Dezenas de gigahertz Como a última fronteira promissora da busca por axions. Como frequências mais altas requerem cavidades menores, a exploração dessa região exigiria cavidades muito pequenas para capturar uma quantidade significativa de sinal.

Novos experimentos tentam encontrar caminhos alternativos. nosso Experimento de plasmascópio longitudinal (Alpha). Utiliza um novo conceito de cavitação baseado em metamateriais.

Os metamateriais são materiais compósitos com propriedades universais que diferem dos seus componentes – são mais do que a soma das suas partes. Uma cavidade preenchida com hastes condutoras tem uma frequência característica como se fosse um milhão de vezes menor, enquanto seu tamanho quase não muda. É exatamente disso que precisamos. Além disso, as barras oferecem um sistema de ajuste integrado e fácil de ajustar.

Atualmente estamos construindo a configuração, que estará pronta para receber dados em alguns anos. A tecnologia é promissora. Seu desenvolvimento foi resultado da colaboração entre físicos do estado sólido, engenheiros elétricos, físicos de partículas e até matemáticos.

READ  Por que a Organização Mundial da Saúde está renomeando Monkeypox?

Embora rebuscados, os axions estão alimentando um progresso que nenhum espectro será capaz de eliminar.

Escrito por Andrea Gallo Russo, Pós-Doutorado em Física, Universidade de Estocolmo.

Adaptado de artigo publicado originalmente em Conversação.Conversação

Continue Reading

Trending

Copyright © 2023