Connect with us

science

Astrônomos descobriram o que poderia ser a galáxia mais distante até agora

Published

on

Astrônomos descobriram o que poderia ser a galáxia mais distante até agora

Os astrônomos têm saltado uns para os outros no passado ultimamente. Na semana passada, um grupo usando o Telescópio Espacial Hubble anunciou que havia descoberto o que poderia ser A estrela mais distante e mais antiga já vistaapelidado de Earendel, que brilhou há 12,9 bilhões de anos, apenas 900 milhões de anos após o Big Bang.

Agora, outro grupo internacional de astrônomos, expandindo os limites dos maiores telescópios da Terra, diz ter descoberto o que parece ser o grupo de luz estelar mais antigo e distante já visto: um ponto avermelhado chamado HD1, que estava despejando enormes quantidades de energia. somente após 330 milhões de anos do Big Bang. Este mundo do tempo ainda não foi explorado. Outro ponto, o HD2 aparece quase à distância.

Os astrônomos podem apenas adivinhar o que são essas bolhas – galáxias, quasares ou talvez algo completamente diferente – enquanto esperam sua chance de observá-los com o novo Telescópio Espacial James Webb. Seja o que for, dizem os astrônomos, eles podem lançar luz sobre um estágio crucial do universo à medida que evoluiu do fogo primordial para os planetas, a vida e nós.

“Fiquei empolgado quando criança que assistiu aos primeiros fogos de artifício em um show fantástico e altamente esperado”, disse Fabio Paccucci, do Harvard-Smithsonian Center for Astrophysics. “Este pode ser um dos primeiros flashes de luz iluminando o universo em um show que acabou criando todas as estrelas, planetas e até flores que vemos ao nosso redor hoje – mais de 13 bilhões de anos depois”.

Dr. Bakuchi fez parte de uma equipe liderada por Yuichi Harikan, da Universidade de Tóquio, que passou 1.200 horas usando vários telescópios terrestres para procurar galáxias muito primitivas. Suas descobertas foram publicadas na quinta-feira em Jornal Astrofísico e a Avisos mensais da Royal Astronomical Society. Foi o trabalho deles também Mencionado na revista Sky & Telescope no início deste ano.

No universo em expansão, quanto mais distante um objeto está de nós, mais rápido ele está se afastando de nós. Assim como o som de uma sirene de ambulância vai para um tom mais baixo, esse movimento faz com que a luz do corpo mude para comprimentos de onda vermelhos mais longos. Em busca das galáxias mais distantes, os astrônomos pesquisaram cerca de 70.000 objetos, e HD1 foi o objeto mais vermelho que conseguiram encontrar.

“A cor vermelha do HD1 surpreendentemente combinava com as características esperadas de uma galáxia a 13,5 bilhões de anos-luz de distância, o que me deu arrepios quando a encontrei”, disse Harrikan em um comunicado divulgado pelo Centro Astrofísico.

No entanto, o padrão-ouro para distâncias cósmicas é o desvio para o vermelho, que é derivado da obtenção de um espectro de um objeto e da medição de quantos comprimentos de onda emitidos pelos elementos característicos aumentam ou ficam vermelhos. Usando o Atacama Large Millimeter/submillimeter Array, ou ALMA – um conjunto de radiotelescópios no Chile – Harikane e sua equipe obtiveram um desvio para o vermelho temporário de HD1 de 13, o que significa que o comprimento de onda da luz emitida pelo átomo de oxigênio foi estendido para 14 vezes maior que um comprimento de onda em imobilidade. O redshift da outra massa não foi determinado.

A galáxia hipotética data de apenas 330 milhões de anos após o início do tempo, e atinge o terreno de caça do Telescópio Webb, que também poderá confirmar uma medição do desvio para o vermelho.

READ  Você quer reduzir o risco de depressão em dois dígitos? Eu acordei uma hora atrás

“Se o desvio para o vermelho do ALMA puder ser confirmado, isso seria uma coisa realmente incrível”, disse ele. Márcia Ricci da Universidade do Arizona, e é investigador principal do Telescópio Webb.

De acordo com a história que os astrônomos contam, o caminho para o universo como o conhecemos começou cerca de 100 milhões de anos após o Big Bang, quando o hidrogênio e o hélio que surgiram na explosão primordial começaram a se condensar nas primeiras estrelas, conhecidas como Estrelas 3 ( População) 1 e 2, que contêm Eles contêm grandes quantidades de elementos pesados, que estão presentes nas galáxias hoje). Essas estrelas, compostas apenas de hidrogênio e hélio, nunca foram observadas e seriam muito maiores e mais brilhantes do que as do universo hoje. Eles teriam queimado quente e morrido rapidamente em explosões de supernovas que então desencadearam a evolução química para poluir o universo original com elementos como oxigênio e ferro, que são coisas nossas.

Dr. Bakuchi disse que inicialmente pensavam que HD1 e HD2 eram as chamadas galáxias starburst, que estão explodindo com novas estrelas. Mas depois de mais pesquisas, eles descobriram que HD1 parece estar produzindo estrelas 10 vezes mais rápido do que essas galáxias costumam fazer.

Outra possibilidade, disse Pacochi, é que esta galáxia foi o nascimento daquele primeiro grupo superbrilhante de três estrelas. Outra explicação é que toda essa radiação vem da dispersão de material em um buraco negro supermassivo com 100 milhões de vezes a massa do Sol. Mas os astrônomos têm dificuldade em explicar como o buraco negro pode ter crescido tanto no início do tempo cósmico.

Ela nasceu assim – no caos do Big Bang – ou ela estava realmente com fome?

READ  Vacina Covid-19: O tempo entre as doses de Pfizer e Moderna Covid-19 pode ser de até 8 semanas para algumas pessoas, de acordo com as diretrizes atualizadas do CDC.

“HD1 representaria um bebê gigante na sala de parto no início do universo”, disse Avi Loeb, co-autor do artigo do Dr. Bakuchi.

Continue Reading
Click to comment

Leave a Reply

O seu endereço de e-mail não será publicado. Campos obrigatórios são marcados com *

science

Autópsia cerebral revela nova causa possível por trás da doença de Alzheimer: ScienceAlert

Published

on

Autópsia cerebral revela nova causa possível por trás da doença de Alzheimer: ScienceAlert

A análise do tecido cerebral humano revelou diferenças na forma como as células imunitárias se comportam nos cérebros de pessoas com doença de Alzheimer em comparação com cérebros saudáveis, sugerindo um potencial novo alvo terapêutico.

A descoberta foi feita por pesquisa liderada pela Universidade de Washington, publicada em agosto Células da micróglia No cérebro de pessoas com doença de Alzheimer Em um estado pró-inflamatório Muitas vezes, tornando-os menos vulneráveis ​​à protecção.

Microglia são células imunológicas que ajudam a manter nosso cérebro saudável, removendo resíduos e mantendo a função cerebral normal.

Em resposta à infecção ou para remover células mortas, estas formas elegantes e que mudam de forma podem tornar-se menos rotativas e mais móveis para engolir invasores e lixo. eles também Sinapses “podam” durante o desenvolvimentoo que ajuda a formar os circuitos que ajudam nosso cérebro a funcionar bem.

Não é certo qual o papel que desempenham na doença de Alzheimer, mas em pessoas com esta doença neurodegenerativa devastadora, algumas microglias respondem muito fortemente. Pode causar inflamação O que contribui para a morte das células cerebrais.

Infelizmente, os ensaios clínicos para Medicamentos anti-inflamatórios para a doença de Alzheimer não mostraram efeitos significativos.

Para aprofundar o papel da micróglia na doença de Alzheimer, os neurocientistas Katherine Prater e Kevin Green, da Universidade de Washington, juntamente com colegas de diversas instituições dos EUA, usaram amostras de autópsias cerebrais de doadores de pesquisa – 12 com doença de Alzheimer e 10 pessoas saudáveis ​​– para estudar a atividade da microglia do gene Small.

Usando um novo método de promoção Sequenciamento de RNA de fita simplesA equipe conseguiu identificar profundamente 10 populações diferentes de micróglia no tecido cerebral com base em seu conjunto único de expressão genética, que diz às células o que fazer.

READ  O foguete superlua Artemis I da NASA fará outro teste antes do lançamento em junho

TTrês grupos nunca haviam sido vistos antes e um deles era mais comum em pessoas com doença de Alzheimer. Este tipo de microglia contém genes que promovem inflamação e morte celular.

No geral, os investigadores descobriram que as populações de microglia nos cérebros das pessoas com doença de Alzheimer tinham maior probabilidade de estar num estado pró-inflamatório.

Isto significa que eram mais propensos a produzir moléculas inflamatórias que podem danificar as células cerebrais e possivelmente contribuir para o desenvolvimento da doença de Alzheimer.

Os tipos de microglia encontrados nos cérebros de pessoas com Alzheimer eram menos propensos a serem protetores, afetando a sua capacidade de puxar o peso, limpando células mortas e resíduos e promovendo o envelhecimento saudável do cérebro.

Micrografia de microglia (verde) de um cérebro com doença de Alzheimer. (Lexi Coquit/Laboratório de Neuroinflamação da Universidade de Wisconsin)

Os cientistas também acreditam que a microglia pode mudar de tipo ao longo do tempo. Portanto, não podemos simplesmente olhar para o cérebro de uma pessoa e dizer com certeza que tipo de micróglia ela possui; Acompanhar como as microglias mudam ao longo do tempo pode nos ajudar a entender como elas contribuem para a doença de Alzheimer.

“Neste momento, não podemos dizer se são as micróglias que estão a causar a doença ou se é a patologia que está a causar a mudança no comportamento destas micróglias.” Ele disse Prater.

Esta investigação ainda está numa fase inicial, mas avança a nossa compreensão sobre o papel destas células na doença de Alzheimer e sugere que algumas populações de microglia podem ser alvos de novos tratamentos.

A equipe espera que o seu trabalho leve ao desenvolvimento de novos tratamentos que possam melhorar a vida das pessoas com doença de Alzheimer.

“Agora que identificámos os perfis genéticos destas micróglias, podemos tentar descobrir exactamente o que fazem e, esperançosamente, identificar formas de mudar os seus comportamentos que possam contribuir para a doença de Alzheimer”, diz Prater. Ele disse.

READ  Por que os sintomas da variante Omicron são semelhantes aos do resfriado comum?

“Se pudermos determinar o que eles estão fazendo, poderemos mudar seu comportamento com tratamentos que possam prevenir ou retardar esta doença.”

O estudo foi publicado em Natureza envelhecida.

Uma versão anterior deste artigo foi publicada em agosto de 2023.

Continue Reading

science

Convertendo matéria escura invisível em luz visível

Published

on

Convertendo matéria escura invisível em luz visível

Aglomerado de galáxias, à esquerda, com um anel de matéria escura visível, à direita. Crédito da imagem: NASA, ESA, MJ Jee e H. Ford (Universidade Johns Hopkins)

As explorações da matéria escura estão a avançar utilizando novas técnicas experimentais concebidas para detectar eixos e aproveitando a tecnologia avançada e a colaboração interdisciplinar para descobrir os segredos desta componente indescritível do universo.

Um fantasma assombra nosso mundo. Isso é conhecido na astronomia e na cosmologia há décadas. Notas eu sugiro cerca de 85% Toda a matéria do universo é misteriosa e invisível. Essas duas qualidades estão refletidas em seu nome: matéria escura.

Vários experimentos Eles pretendem descobrir os seus ingredientes, mas apesar de décadas de investigação, os cientistas não conseguiram. agora Nossa nova experiênciaem construção em Universidade de Yale Nos Estados Unidos, oferece uma nova tática.

A matéria escura existe no universo desde o início dos tempos. Junte estrelas e galáxias. Invisível e sutil, não parece interagir com a luz ou qualquer outro tipo de matéria. Na verdade, deveria ser algo completamente novo.

O Modelo Padrão da física de partículas está incompleto e isso é um problema. Temos que procurar o novo Partículas fundamentais. Surpreendentemente, as mesmas falhas do modelo padrão dão pistas preciosas sobre onde podem estar escondidas.

O problema com o nêutron

Veja o nêutron, por exemplo. Forma o núcleo atômico com o próton. Embora geralmente neutra, a teoria afirma que é composta por três partículas carregadas chamadas quarks. Por esta razão, esperamos que algumas partes do nêutron tenham carga positiva e outras negativamente – o que significa que ele teve o que os físicos chamam de momento de dipolo elétrico.

Até agora, Muitas tentativas Medi-lo levou à mesma conclusão: é pequeno demais para ser descoberto. Outro fantasma. Não estamos a falar de deficiências nos instrumentos, mas sim de um factor que deve ser inferior a uma parte em dez mil milhões. É tão pequeno que as pessoas se perguntam se poderia ser completamente zero.

READ  Plesiossauro: caçadores de fósseis na Austrália descobriram um esqueleto de 100 milhões de anos

Mas na física, o zero matemático é sempre uma afirmação forte. No final da década de 1970, os físicos de partículas Roberto Picci e Helen Coyne (e mais tarde Frank Wilczek e Steven Weinberg) tentaram descobrir Compreendendo a teoria e as evidências.

Eles sugeriram que o parâmetro provavelmente não é zero. Em vez disso, é uma quantidade dinâmica que perde lentamente a sua carga e depois evolui para zero. a grande explosão. Cálculos teóricos mostram que, se tal evento ocorreu, deve ter deixado para trás um grande número de partículas de luz ilusórias.

Eles são chamados de “áxions” em homenagem a uma marca de detergente porque podem “resolver” o problema dos nêutrons. E ainda mais. Se os áxions foram criados no início do universo, eles existem desde então. Mais importante ainda, as suas propriedades definem todos os elementos esperados da matéria escura. Por estas razões, os hubs tornaram-se um dos Partículas candidatas preferidas Para matéria escura.

Os áxions interagirão fracamente com outras partículas. No entanto, isso significa que eles ainda interagirão bastante. Eixos invisíveis podem se transformar em partículas comuns, incluindo – ironicamente – fótons, a essência da luz. Isto pode acontecer sob certas condições, como a presença de um campo magnético. Esta é uma dádiva de Deus para os físicos experimentais.

Design experimental

Muitos experimentos Eles tentam conjurar o fantasma de Axion em um ambiente de laboratório controlado. Alguns deles visam converter a luz em eixo, por exemplo, e depois transformar o eixo em luz do outro lado da parede.

Atualmente, a abordagem mais sensível tem como alvo o halo de matéria escura que permeia a galáxia (e, portanto, a Terra) usando um dispositivo chamado coroa. É uma cavidade condutora imersa em um forte campo magnético. O primeiro capta a matéria escura que nos rodeia (presumindo que sejam axônios), enquanto o segundo a faz se transformar em luz. O resultado é um sinal eletromagnético que aparece dentro da cavidade, oscilando em uma frequência característica dependendo da massa do áxion.

READ  Vacina Covid-19: O tempo entre as doses de Pfizer e Moderna Covid-19 pode ser de até 8 semanas para algumas pessoas, de acordo com as diretrizes atualizadas do CDC.

O sistema funciona como um receptor de rádio. Deve ser devidamente ajustado para interceptar a frequência de interesse. Na prática, as dimensões da cavidade são alteradas para acomodar diferentes frequências características. Se as frequências do áxion e da cavidade não corresponderem, é como sintonizar o rádio no canal errado.

Um poderoso ímã supercondutor foi transferido para a Universidade de Yale

O poderoso ímã é transportado para o laboratório da Universidade de Yale. Crédito: Universidade de Yale

Infelizmente, o canal que procuramos não pode ser previsto com antecedência. Não temos escolha a não ser varrer todas as frequências possíveis. É como selecionar uma estação de rádio em um mar de ruído branco – uma agulha em um palheiro – com um rádio antigo que precisa ser aumentado ou menor toda vez que giramos o botão de frequência.

Contudo, estes não são os únicos desafios. Cosmologia refere-se a Dezenas de gigahertz Como a última fronteira promissora da busca por axions. Como frequências mais altas requerem cavidades menores, a exploração dessa região exigiria cavidades muito pequenas para capturar uma quantidade significativa de sinal.

Novos experimentos tentam encontrar caminhos alternativos. nosso Experimento de plasmascópio longitudinal (Alpha). Utiliza um novo conceito de cavitação baseado em metamateriais.

Os metamateriais são materiais compósitos com propriedades universais que diferem dos seus componentes – são mais do que a soma das suas partes. Uma cavidade preenchida com hastes condutoras tem uma frequência característica como se fosse um milhão de vezes menor, enquanto seu tamanho quase não muda. É exatamente disso que precisamos. Além disso, as barras oferecem um sistema de ajuste integrado e fácil de ajustar.

Atualmente estamos construindo a configuração, que estará pronta para receber dados em alguns anos. A tecnologia é promissora. Seu desenvolvimento foi resultado da colaboração entre físicos do estado sólido, engenheiros elétricos, físicos de partículas e até matemáticos.

READ  Você quer reduzir o risco de depressão em dois dígitos? Eu acordei uma hora atrás

Embora rebuscados, os axions estão alimentando um progresso que nenhum espectro será capaz de eliminar.

Escrito por Andrea Gallo Russo, Pós-Doutorado em Física, Universidade de Estocolmo.

Adaptado de artigo publicado originalmente em Conversação.Conversação

Continue Reading

science

A 30ª missão de carga Dragon da SpaceX sai da Estação Espacial Internacional e pousa na Terra

Published

on

A 30ª missão de carga Dragon da SpaceX sai da Estação Espacial Internacional e pousa na Terra

A 30ª nave de carga robótica Dragon da SpaceX retornou ao seu lar na Terra.

A espaçonave Dragon partiu da Estação Espacial Internacional (ISS) hoje (28 de abril) às 13h10 EDT (1710 GMT), enquanto ambas as espaçonaves sobrevoavam a Tailândia. Era uma noite tropical naquela área, então não havia boas fotos do momento da atracação.

Continue Reading

Trending

Copyright © 2023