Connect with us

science

Inteligência artificial revela conexões inesperadas escondidas na matemática complexa por trás da busca por exoplanetas

Published

on

Inteligência artificial revela conexões inesperadas escondidas na matemática complexa por trás da busca por exoplanetas

Concepção artística de uma estrela parecida com o Sol (esquerda) e um planeta rochoso cerca de 60% maior que a Terra em órbita na zona habitável da estrela. A microlente gravitacional tem a capacidade de detectar tais sistemas planetários e determinar massas e distâncias orbitais, mesmo que o próprio planeta seja opaco demais para ser visto. Crédito da imagem: NASA Ames / JPL-Caltech / T. Pyle

O algoritmo de aprendizado de máquina aponta para problemas na teoria matemática para a interpretação de microlentes.

Sistemas de inteligência artificial (IA) treinados em observações astronômicas reais agora ignoram os astrônomos na filtragem de grandes quantidades de dados para encontrar novas supernovas, identificar novos tipos de galáxias e descobrir fusões massivas de estrelas, aumentando a taxa de novas descobertas no mundo. Eu ofereço ciência.

Mas um tipo de inteligência artificial chamado aprendizado de máquina pode revelar algo mais profundo,[{” attribute=””>University of California, Berkeley, astronomers found: unsuspected connections hidden in the complex mathematics arising from general relativity — in particular, how that theory is applied to finding new planets around other stars.

In a paper published on May 23, 2022, in the journal Nature Astronomy, the researchers describe how an AI algorithm developed to more quickly detect exoplanets when such planetary systems pass in front of a background star and briefly brighten it — a process known as gravitational microlensing — revealed that the decades-old theories now used to explain these observations are woefully incomplete.

In 1936, Albert Einstein himself used his new theory of general relativity to show how the light from a distant star can be bent by the gravity of a foreground star, not only brightening it as seen from Earth, but often splitting it into several points of light or distorting it into a ring, now called an Einstein ring. This is similar to the way a hand lens can focus and intensify light from the sun.

But when the foreground object is a star with a planet, the brightening over time — the light curve — is more complicated. What’s more, there are often multiple planetary orbits that can explain a given light curve equally well — so called degeneracies. That’s where humans simplified the math and missed the bigger picture.

Geometry of Exoplanet Discovery

Seen from Earth (left), a planetary system moving in front of a background star (source, right) distorts the light from that star, making it brighten as much as 10 or 100 times. Because both the star and exoplanet in the system bend the light from the background star, the masses and orbital parameters of the system can be ambiguous. An AI algorithm developed by UC Berkeley astronomers got around that problem, but it also pointed out errors in how astronomers have been interpreting the mathematics of gravitational microlensing. Credit: Diagram courtesy of Research Gate

The AI algorithm, however, pointed to a mathematical way to unify the two major kinds of degeneracy in interpreting what telescopes detect during microlensing, showing that the two “theories” are really special cases of a broader theory that, the researchers admit, is likely still incomplete.

“A machine learning inference algorithm we previously developed led us to discover something new and fundamental about the equations that govern the general relativistic effect of light- bending by two massive bodies,” Joshua Bloom wrote in a blog post last year when he uploaded the paper to a preprint server, arXiv. Bloom is a UC Berkeley professor of astronomy and chair of the department.

He compared the discovery by UC Berkeley graduate student Keming Zhang to connections that Google’s AI team, DeepMind, recently made between two different areas of mathematics. Taken together, these examples show that AI systems can reveal fundamental associations that humans miss.

“I argue that they constitute one of the first, if not the first time that AI has been used to directly yield new theoretical insight in math and astronomy,” Bloom said. “Just as Steve Jobs suggested computers could be the bicycles of the mind, we’ve been seeking an AI framework to serve as an intellectual rocket ship for scientists.”

“This is kind of a milestone in AI and machine learning,” emphasized co-author Scott Gaudi, a professor of astronomy at The Ohio State University and one of the pioneers of using gravitational microlensing to discover exoplanets. “Keming’s machine learning algorithm uncovered this degeneracy that had been missed by experts in the field toiling with data for decades. This is suggestive of how research is going to go in the future when it is aided by machine learning, which is really exciting.”

Discovering exoplanets with microlensing

More than 5,000 exoplanets, or extrasolar planets, have been discovered around stars in the Milky Way, though few have actually been seen through a telescope — they are too dim. Most have been detected because they create a Doppler wobble in the motions of their host stars or because they slightly dim the light from the host star when they cross in front of it — transits that were the focus of NASA’s Kepler mission. Little more than 100 have been discovered by a third technique, microlensing.

Extrasolar Planet Detected by Gravitational Microlensing

This infographic explains the light curve astronomers detect when viewing a microlensing event, and the signature of an exoplanet: an additional uptick in brightness when the exoplanet lenses the background star. Credit: NASA, ESA, and K. Sahu (STScI)

One of the main goals of NASA’s Nancy Grace Roman Space Telescope, scheduled to launch by 2027, is to discover thousands more exoplanets via microlensing. The technique has an advantage over the Doppler and transit techniques in that it can detect lower-mass planets, including those the size of Earth, that are far from their stars, at a distance equivalent to that of Jupiter or Saturn in our solar system.

Bloom, Zhang and their colleagues set out two years ago to develop an AI algorithm to analyze microlensing data faster to determine the stellar and planetary masses of these planetary systems and the distances the planets are orbiting from their stars. Such an algorithm would speed analysis of the likely hundreds of thousands of events the Roman telescope will detect in order to find the 1% or fewer that are caused by exoplanetary systems.

One problem astronomers encounter, however, is that the observed signal can be ambiguous. When a lone foreground star passes in front of a background star, the brightness of the background stars rises smoothly to a peak and then drops symmetrically to its original brightness. It’s easy to understand mathematically and observationally.

Keming Zhang

UC Berkeley doctoral student Keming Zhang. Credit: Photo courtesy of Keming Zhang

But if the foreground star has a planet, the planet creates a separate brightness peak within the peak caused by the star. When trying to reconstruct the orbital configuration of the exoplanet that produced the signal, general relativity often allows two or more so-called degenerate solutions, all of which can explain the observations.

To date, astronomers have generally dealt with these degeneracies in simplistic and artificially distinct ways, Gaudi said. If the distant starlight passes close to the star, the observations could be interpreted either as a wide or a close orbit for the planet — an ambiguity astronomers can often resolve with other data. A second type of degeneracy occurs when the background starlight passes close to the planet. In this case, however, the two different solutions for the planetary orbit are generally only slightly different.

According to Gaudi, these two simplifications of two-body gravitational microlensing are usually sufficient to determine the true masses and orbital distances. In fact, in a paper published last year, Zhang, Bloom, Gaudi, and two other UC Berkeley co-authors, astronomy professor Jessica Lu and graduate student Casey Lam, described a new AI algorithm that does not rely on knowledge of these interpretations at all. The algorithm greatly accelerates analysis of microlensing observations, providing results in milliseconds, rather than days, and drastically reducing the computer crunching.

Zhang then tested the new AI algorithm on microlensing light curves from hundreds of possible orbital configurations of star and exoplanet and discovered something unusual: There were other ambiguities that the two interpretations did not account for. He concluded that the commonly used interpretations of microlensing were, in fact, just special cases of a broader theory that explains the full variety of ambiguities in microlensing events.

“The two previous theories of degeneracy deal with cases where the background star appears to pass close to the foreground star or the foreground planet,” Zhang said. “The AI algorithm showed us hundreds of examples from not only these two cases, but also situations where the star doesn’t pass close to either the star or planet and cannot be explained by either previous theory. That was key to us proposing the new unifying theory.”

Gaudi was skeptical, at first, but came around after Zhang produced many examples where the previous two theories did not fit observations and the new theory did. Zhang actually looked at the data from two dozen previous papers that reported the discovery of exoplanets through microlensing and found that, in all cases, the new theory fit the data better than the previous theories.

“People were seeing these microlensing events, which actually were exhibiting this new degeneracy but just didn’t realize it,” Gaudi said. “It was really just the machine learning looking at thousands of events where it became impossible to miss.”

Zhang and Gaudi have submitted a new paper that rigorously describes the new mathematics based on general relativity and explores the theory in microlensing situations where more than one exoplanet orbits a star.

The new theory technically makes interpretation of microlensing observations more ambiguous, since there are more degenerate solutions to describe the observations. But the theory also demonstrates clearly that observing the same microlensing event from two perspectives — from Earth and from the orbit of the Roman Space Telescope, for example — will make it easier to settle on the correct orbits and masses. That is what astronomers currently plan to do, Gaudi said.

“The AI suggested a way to look at the lens equation in a new light and uncover something really deep about the mathematics of it,” said Bloom. “AI is sort of emerging as not just this kind of blunt tool that’s in our toolbox, but as something that’s actually quite clever. Alongside an expert like Keming, the two were able to do something pretty fundamental.”

Reference: “A ubiquitous unifying degeneracy in two-body microlensing systems” by Keming Zhang, B. Scott Gaudi and Joshua S. Bloom, 23 May 2022, Nature Astronomy.
DOI: 10.1038/s41550-022-01671-6

READ  Um míssil da Nova Zelândia foi capturado, mas depois abatido por um helicóptero
Continue Reading
Click to comment

Leave a Reply

O seu endereço de e-mail não será publicado. Campos obrigatórios são marcados com *

science

Nova pesquisa revela que os dinossauros não eram tão inteligentes quanto pensávamos

Published

on

Nova pesquisa revela que os dinossauros não eram tão inteligentes quanto pensávamos

Fotografia de um esqueleto de T. rex no Museu Senckenberg em Frankfurt, Alemanha. O Tiranossauro rex viveu no final do período Cretáceo (cerca de 66 milhões de anos atrás) e foi encontrado exclusivamente no oeste da América do Norte. Crédito: Kay R. Caspar

Os dinossauros eram tão inteligentes quanto os répteis, mas não tão inteligentes quanto os macacos, como sugerem pesquisas anteriores.

Uma equipe internacional de paleontólogos, etólogos e neurologistas reexaminou o tamanho e a estrutura do cérebro dos dinossauros e concluiu que eles se comportavam como crocodilos e lagartos.

Num estudo publicado no ano passado, afirmou-se que os dinossauros adoram Tiranossauro Rex Eles tinham um número excepcionalmente grande de neurônios e eram significativamente mais inteligentes do que o esperado. Tem sido afirmado que este elevado número de neurónios poderia beneficiar diretamente a inteligência, o metabolismo e a história de vida. Tiranossauro Rex Ele lembrava um macaco em alguns de seus hábitos. A transmissão cultural de conhecimento, bem como o uso de ferramentas têm sido citados como exemplos de características cognitivas que podem ter possuído.

Crítica da metodologia de contagem de neurônios

Mas o novo estudo publicado em Registro anatômico, em que Hadi George da Universidade de Bristol, Dr. Darren Naish (Universidade de Southampton) e liderado pelo Dr. Royal Ontario Museum) observe mais de perto as técnicas usadas para prever o tamanho do cérebro e o número de neurônios nos cérebros dos dinossauros. A equipe descobriu que suposições anteriores sobre o tamanho do cérebro dos dinossauros e o número de neurônios que seus cérebros continham não eram confiáveis.

A relação entre cérebro e massa corporal em vertebrados terrestres

A relação entre o cérebro e a massa corporal em vertebrados terrestres. Dinossauros como o T. rex tinham proporções de tamanho cérebro-corpo semelhantes às dos répteis vivos. Crédito: Cristian Gutierrez Ibanez

Esta pesquisa surge após décadas de análises nas quais paleontólogos e biólogos examinaram o tamanho e a anatomia do cérebro dos dinossauros e usaram esses dados para inferir comportamento e estilo de vida. As informações sobre os cérebros dos dinossauros vêm dos recheios minerais das cavidades cerebrais, chamados endocasts, bem como dos formatos das próprias cavidades.

READ  Uma abordagem de IA pode ajudar a detectar a doença de Alzheimer por meio de testes de imagem cerebral de rotina

A equipe descobriu que o tamanho de seus cérebros era exagerado – especialmente o tamanho do prosencéfalo – e, portanto, seus neurônios também eram importantes. Além disso, mostraram que as estimativas do número de neurônios não são um guia confiável para a inteligência.

Recomendações para pesquisas futuras

Para reconstruir de forma confiável a biologia de organismos extintos há muito tempo ClassificarA equipe acredita que os pesquisadores devem considerar múltiplas linhas de evidência, incluindo anatomia esquelética, histologia óssea, comportamento de parentes vivos e vestígios de fósseis. “A inteligência dos dinossauros e de outros animais extintos é melhor determinada usando uma variedade de evidências que vão desde a anatomia macroscópica até pegadas fósseis, em vez de confiar apenas em estimativas do número de neurônios”, explicou Hadi, da Escola de Ciências da Terra de Bristol.

“Somos da opinião de que não é uma boa prática prever a inteligência em espécies extintas quando a população de neurônios reconstruída a partir de células endógenas é tudo o que temos para prosseguir”, explicou o Dr. Kai Kaspar.

“Os números de neurônios não são bons preditores do desempenho cognitivo, e usá-los para prever a inteligência em espécies extintas pode levar a interpretações muito enganosas”, acrescentou a Dra. Ornella Bertrand (Instituto de Paleontologia Miquel Crosafont da Catalunha).

O Dr. Darren Naish concluiu: “A possibilidade de o T. rex ser tão inteligente como um babuíno é ao mesmo tempo fascinante e assustadora, com o potencial de reinventar a nossa visão do passado.” “Mas o nosso estudo mostra como todos os nossos dados contradizem esta ideia. Eles eram mais parecidos com crocodilos gigantes e inteligentes, e isso é igualmente notável.”

Referência: “Quão inteligente foi o T. Rex?” Testando afirmações de cognição extraordinária em dinossauros e aplicando estimativas de número de neurônios na pesquisa paleontológica” por Kay R. Caspar, Christian Gutierrez Ibáñez, Ornella C. Bertrand, Thomas Carr, Jennifer A. D. Colburn e Arthur Erb, Hadi George, Thomas R. Holtz, Darren Naish, Douglas R. Willey e Grant R. Hurlburt, 26 de abril de 2024, Registro anatômico.
doi: 10.1002/ar.25459

READ  O Telescópio Webb atinge um marco importante: toda a sua luz em um só lugar

Continue Reading

science

Cientistas estão se preparando para tempestades solares em Marte

Published

on

Cientistas estão se preparando para tempestades solares em Marte

Esta ejeção de massa coronal, capturada pelo Solar Dynamics Observatory da NASA, explodiu no Sol em 31 de agosto de 2012, viajando a mais de 1.400 quilômetros por segundo e enviando radiação para as profundezas do espaço. O campo magnético da Terra protege-a da radiação de eventos solares como este, enquanto Marte carece deste tipo de protecção. Fonte: NASA/SDO

O Sol estará mais ativo este ano, proporcionando uma rara oportunidade de estudar como as tempestades solares e a radiação afetarão os futuros astronautas no Planeta Vermelho.

Nos próximos meses, dois dos NASAde Marte A espaçonave terá uma oportunidade sem precedentes de estudar como as erupções solares – explosões gigantescas na superfície do Sol – afetam futuros robôs e astronautas no Planeta Vermelho.

Isso ocorre porque o Sol está entrando em um período de pico de atividade denominado máximo solar, algo que acontece aproximadamente a cada 11 anos. Durante o máximo solar, o Sol é particularmente propenso a explosões de fogo em uma variedade de formas – incluindo… Erupções solares E Ejeção de massa coronal – Que libera radiação nas profundezas do espaço. Quando uma série desses eventos solares irrompe, isso é chamado de tempestade solar.


Saiba como o rover MAVEN da NASA e o rover Curiosity da agência estudam as erupções solares e a radiação em Marte durante o máximo solar – o período em que o Sol está mais ativo. Crédito: NASA/Laboratório de Propulsão a Jato– Caltech/GSFC/SDO/MSSS/Universidade do Colorado

O campo magnético da Terra protege em grande parte o nosso planeta natal dos efeitos destas tempestades. Mas Marte perdeu o seu campo magnético global há muito tempo, tornando o Planeta Vermelho mais vulnerável às partículas energéticas do Sol. Quão intensa é a atividade solar em Marte? Os pesquisadores esperam que o atual máximo solar lhes dê a chance de descobrir. Antes de enviar humanos para lá, as agências espaciais precisam determinar, entre muitos outros detalhes, que tipo de proteção radiológica os astronautas necessitarão.

READ  SpaceX acaba de realizar três lançamentos em 36 horas

“Para os humanos e as origens marcianas, não temos uma compreensão sólida do impacto da radiação durante a atividade solar”, disse Shannon Curry, do Laboratório de Física Atmosférica e Espacial da Universidade do Colorado em Boulder. Curry é o investigador principal do orbitador MAVEN (Mars Atmospheric and Volatile Evolution) da NASA, operado pelo Goddard Space Flight Center da NASA em Greenbelt, Maryland. “Na verdade, gostaria de ver um ‘grande evento’ em Marte este ano – um grande evento que possamos estudar para compreender melhor a radiação solar antes dos astronautas irem a Marte.”

Detector de avaliação de radiação do rover Curiosity

O detector de avaliação de radiação no rover Curiosity da NASA é destacado nesta imagem anotada do Mastcam do rover. Os cientistas da RAD estão entusiasmados em usar o instrumento para estudar a radiação em Marte durante o máximo solar. Fonte da imagem: NASA/JPL-Caltech/MSSS

Meça a altura e a queda

MAVEN monitora radiação, partículas solares e muito mais acima da superfície de Marte. A fina atmosfera de um planeta pode afetar a densidade das moléculas no momento em que atingem a superfície, e é aí que a sonda Curiosity da NASA entra em ação. Dados do detector de avaliação de radiação do Curiosity, ou RadAjudou os cientistas a compreender como a radiação decompõe as moléculas de carbono na superfície, um processo que pode afetar a preservação de sinais de vida microbiana antiga. A ferramenta também deu à NASA uma ideia de quanta proteção os astronautas poderiam esperar da radiação, usando cavernas, tubos de lava ou faces de penhascos para proteção.

Quando ocorre um evento solar, os cientistas observam a quantidade de partículas solares e quão ativas elas são.

Atmosfera de Marte e Evolução Volátil da NASA (MAVEN)

Este conceito artístico retrata a atmosfera marciana e a espaçonave MAVEN da NASA perto de Marte. Crédito: NASA/GSFC

“Poderíamos ter 1 milhão de partículas de baixa energia ou 10 partículas de energia muito alta”, disse o investigador principal da RAD, Don Hasler, do escritório do Southwest Research Institute em Boulder, Colorado. “Embora os instrumentos MAVEN sejam mais sensíveis a instrumentos de baixa energia, o RAD é o único instrumento capaz de ver instrumentos de alta energia que podem cruzar a atmosfera até a superfície, onde estarão os astronautas.”

READ  A NASA tira uma foto do sol "sorridente". Não é tão fofo quanto parece.

Quando o MAVEN detecta uma grande explosão solar, a equipe do orbitador informa à equipe do Curiosity para saber sobre isso para que possam monitorar as mudanças nos dados RAD. As duas missões também podem compilar uma série temporal que mede as mudanças até meio segundo quando as partículas atingem a atmosfera marciana, interagem com ela e, eventualmente, atingem a superfície.

A missão MAVEN também conduz um sistema de alerta precoce que permite que outras equipas de naves espaciais de Marte saibam quando os níveis de radiação começam a subir. O sistema de alerta permite que as missões desliguem dispositivos que podem ser vulneráveis ​​a explosões solares, que podem interferir na eletrônica e nas comunicações de rádio.

Água perdida

Além de ajudar a manter os astronautas e as naves espaciais seguros, estudar o máximo solar também pode fornecer informações sobre a razão pela qual Marte mudou de um mundo quente e húmido, semelhante à Terra, há milhares de milhões de anos, para um deserto congelado hoje.

O planeta está em um ponto de sua órbita quando está mais próximo do Sol, aquecendo a atmosfera. Isso pode causar tempestades de poeira crescentes que cobrem a superfície. Às vezes as tempestades se fundem, tornando-se globais (veja a imagem abaixo).

Animação de uma tempestade global de poeira em Marte

Marte antes e depois da tempestade de poeira: filmes lado a lado mostram como a tempestade de poeira global de 2018 cobriu o planeta vermelho, graças à câmera Mars Color Imager (MARCI) a bordo do Mars Reconnaissance Orbiter da NASA. Esta tempestade global de poeira fez com que a espaçonave da NASA perdesse contato com a Terra. Fonte da imagem: NASA/JPL-Caltech/MSSS

Embora reste pouca água em Marte – principalmente gelo sob a superfície e nos pólos – parte dela ainda circula como vapor na atmosfera. Os cientistas questionam-se se as tempestades globais de poeira ajudam a expulsar este vapor de água, elevando-o bem acima do planeta, onde a atmosfera é destruída durante as tempestades solares. Uma teoria é que este processo, repetido várias vezes ao longo de eras, pode explicar como Marte deixou de ter lagos e rios para ser hoje praticamente sem água.

READ  O Telescópio Webb atinge um marco importante: toda a sua luz em um só lugar

Se uma tempestade global de poeira ocorresse ao mesmo tempo que uma tempestade solar, seria uma oportunidade para testar esta teoria. Os cientistas estão particularmente entusiasmados porque este máximo solar ocorre no início da estação mais poeirenta de Marte, mas também sabem que uma tempestade de poeira global é rara.

Mais sobre missões

O Goddard Space Flight Center da NASA em Greenbelt, Maryland, gerencia a missão MAVEN. A Lockheed Martin Space construiu a espaçonave e é responsável pelas operações da missão. JPL fornece navegação e suporte de rede espacial profunda. O Laboratório de Física Atmosférica e Espacial da Universidade do Colorado Boulder é responsável pelo gerenciamento de operações científicas, divulgação pública e comunicações.

O Curiosity foi construído pelo Laboratório de Propulsão a Jato da NASA, operado pelo Instituto de Tecnologia da Califórnia em Pasadena, Califórnia. O JPL está liderando a missão em nome da Diretoria de Missões Científicas da NASA em Washington. A investigação RAD é apoiada pela Divisão de Heliofísica da NASA como parte do Heliophysics System Observatory (HSO) da NASA.

Continue Reading

science

Autópsia cerebral revela nova causa possível por trás da doença de Alzheimer: ScienceAlert

Published

on

Autópsia cerebral revela nova causa possível por trás da doença de Alzheimer: ScienceAlert

A análise do tecido cerebral humano revelou diferenças na forma como as células imunitárias se comportam nos cérebros de pessoas com doença de Alzheimer em comparação com cérebros saudáveis, sugerindo um potencial novo alvo terapêutico.

A descoberta foi feita por pesquisa liderada pela Universidade de Washington, publicada em agosto Células da micróglia No cérebro de pessoas com doença de Alzheimer Em um estado pró-inflamatório Muitas vezes, tornando-os menos vulneráveis ​​à protecção.

Microglia são células imunológicas que ajudam a manter nosso cérebro saudável, removendo resíduos e mantendo a função cerebral normal.

Em resposta à infecção ou para remover células mortas, estas formas elegantes e que mudam de forma podem tornar-se menos rotativas e mais móveis para engolir invasores e lixo. eles também Sinapses “podam” durante o desenvolvimentoo que ajuda a formar os circuitos que ajudam nosso cérebro a funcionar bem.

Não é certo qual o papel que desempenham na doença de Alzheimer, mas em pessoas com esta doença neurodegenerativa devastadora, algumas microglias respondem muito fortemente. Pode causar inflamação O que contribui para a morte das células cerebrais.

Infelizmente, os ensaios clínicos para Medicamentos anti-inflamatórios para a doença de Alzheimer não mostraram efeitos significativos.

Para aprofundar o papel da micróglia na doença de Alzheimer, os neurocientistas Katherine Prater e Kevin Green, da Universidade de Washington, juntamente com colegas de diversas instituições dos EUA, usaram amostras de autópsias cerebrais de doadores de pesquisa – 12 com doença de Alzheimer e 10 pessoas saudáveis ​​– para estudar a atividade da microglia do gene Small.

Usando um novo método de promoção Sequenciamento de RNA de fita simplesA equipe conseguiu identificar profundamente 10 populações diferentes de micróglia no tecido cerebral com base em seu conjunto único de expressão genética, que diz às células o que fazer.

READ  SpaceX acaba de realizar três lançamentos em 36 horas

TTrês grupos nunca haviam sido vistos antes e um deles era mais comum em pessoas com doença de Alzheimer. Este tipo de microglia contém genes que promovem inflamação e morte celular.

No geral, os investigadores descobriram que as populações de microglia nos cérebros das pessoas com doença de Alzheimer tinham maior probabilidade de estar num estado pró-inflamatório.

Isto significa que eram mais propensos a produzir moléculas inflamatórias que podem danificar as células cerebrais e possivelmente contribuir para o desenvolvimento da doença de Alzheimer.

Os tipos de microglia encontrados nos cérebros de pessoas com Alzheimer eram menos propensos a serem protetores, afetando a sua capacidade de puxar o peso, limpando células mortas e resíduos e promovendo o envelhecimento saudável do cérebro.

Micrografia de microglia (verde) de um cérebro com doença de Alzheimer. (Lexi Coquit/Laboratório de Neuroinflamação da Universidade de Wisconsin)

Os cientistas também acreditam que a microglia pode mudar de tipo ao longo do tempo. Portanto, não podemos simplesmente olhar para o cérebro de uma pessoa e dizer com certeza que tipo de micróglia ela possui; Acompanhar como as microglias mudam ao longo do tempo pode nos ajudar a entender como elas contribuem para a doença de Alzheimer.

“Neste momento, não podemos dizer se são as micróglias que estão a causar a doença ou se é a patologia que está a causar a mudança no comportamento destas micróglias.” Ele disse Prater.

Esta investigação ainda está numa fase inicial, mas avança a nossa compreensão sobre o papel destas células na doença de Alzheimer e sugere que algumas populações de microglia podem ser alvos de novos tratamentos.

A equipe espera que o seu trabalho leve ao desenvolvimento de novos tratamentos que possam melhorar a vida das pessoas com doença de Alzheimer.

“Agora que identificámos os perfis genéticos destas micróglias, podemos tentar descobrir exactamente o que fazem e, esperançosamente, identificar formas de mudar os seus comportamentos que possam contribuir para a doença de Alzheimer”, diz Prater. Ele disse.

READ  Uma abordagem de IA pode ajudar a detectar a doença de Alzheimer por meio de testes de imagem cerebral de rotina

“Se pudermos determinar o que eles estão fazendo, poderemos mudar seu comportamento com tratamentos que possam prevenir ou retardar esta doença.”

O estudo foi publicado em Natureza envelhecida.

Uma versão anterior deste artigo foi publicada em agosto de 2023.

Continue Reading

Trending

Copyright © 2023