Connect with us

science

Descoberta chave em busca da origem da vida – os astrônomos descobrem a maior molécula ainda na ‘armadilha de poeira’ cósmica

Published

on

Descoberta chave em busca da origem da vida – os astrônomos descobrem a maior molécula ainda na ‘armadilha de poeira’ cósmica

Usando a Matriz Grande Milímetro/Metro do Atacama ([{” attribute=””>ALMA) in Chile, researchers at Leiden Observatory in the Netherlands have for the first time detected dimethyl ether in a planet-forming disc. With nine atoms, this is the largest molecule identified in such a disc to date. It is also a precursor of larger organic molecules that can lead to the emergence of life.

Dimethyl Ether Spotted in Disc Around IRS 48 Star

This composite image features an artistic impression of the planet-forming disc around the IRS 48 star, also known as Oph-IRS 48. The disc contains a cashew-nut-shaped region in its southern part, which traps millimeter-sized dust grains that can come together and grow into kilometer-sized objects like comets, asteroids, and potentially even planets. Recent observations with the Atacama Large Millimeter/submillimeter Array (ALMA) spotted several complex organic molecules in this region, including dimethyl ether, the largest molecule found in a planet-forming disc to date. The emission signaling the presence of this molecule (real observations shown in blue) is clearly stronger in the disc’s dust trap. A model of the molecule is also shown in this composite. Credit: ESO/L. Calçada, ALMA (ESO/NAOJ/NRAO)/A. Pohl, van der Marel et al., Brunken et al.

“From these results, we can learn more about the origin of life on our planet and therefore get a better idea of the potential for life in other planetary systems. It is very exciting to see how these findings fit into the bigger picture,” says Nashanty Brunken, a Master’s student at Leiden Observatory, part of Leiden University, and lead author of the study published on March 8, 2022, in Astronomy & Astrophysics.


Como os componentes da vida terminam nos planetas? A descoberta da maior molécula já encontrada em um disco de formação de planetas fornece pistas para isso. crédito:[{” attribute=””>ESO

Dimethyl ether is an organic molecule commonly seen in star-forming clouds, but had never before been found in a planet-forming disc. The researchers also made a tentative detection of methyl formate, a complex molecule similar to dimethyl ether that is also a building block for even larger organic molecules.

READ  Telescópio Romano da NASA: Como o Sucessor de James Webb Mapeará o Universo com Grandes Quantidades de Dados

“It is really exciting to finally detect these larger molecules in discs. For a while we thought it might not be possible to observe them,” says co-author Alice Booth, also a researcher at Leiden Observatory.

Molecules in Disc Around Star IRS 48

These images from the Atacama Large Millimeter/submillimeter Array (ALMA) show where various gas molecules were found in the disc around the IRS 48 star, also known as Oph-IRS 48. The disc contains a cashew-nut-shaped region in its southern part, which traps millimeter-sized dust grains that can come together and grow into kilometer-sized objects like comets, asteroids and potentially even planets. Recent observations spotted several complex organic molecules in this region, including formaldehyde (H2CO; orange), methanol (CH3OH; green), and dimethyl ether (CH3OCH3; blue), the last being the largest molecule found in a planet-forming disc to date. The emission signaling the presence of these molecules is clearly stronger in the disc’s dust trap, while carbon monoxide gas (CO; purple) is present in the entire gas disc. The location of the central star is marked with a star in all four images. The dust trap is about the same size as the area taken up by the methanol emission, shown on the bottom left. Credit: ALMA (ESO/NAOJ/NRAO)/A. Pohl, van der Marel et al., Brunken et al.

The molecules were found in the planet-forming disc around the young star IRS 48 (also known as Oph-IRS 48) with the help of ALMA, an observatory co-owned by the European Southern Observatory (ESO). IRS 48, located 444 light-years away in the constellation Ophiuchus, has been the subject of numerous studies because its disc contains an asymmetric, cashew-nut-shaped “dust trap.” This region, which likely formed as a result of a newly born planet or small companion star located between the star and the dust trap, retains large numbers of millimeter-sized dust grains that can come together and grow into kilometer-sized objects like comets, asteroids and potentially even planets.

Dust Trap/Comet Factory Around Oph-IRS 48

Annotated image from the Atacama Large Millimeter/submillimeter Array (ALMA) showing the dust trap in the disc that surrounds the system Oph-IRS 48. The dust trap provides a safe haven for the tiny dust particles in the disc, allowing them to clump together and grow to sizes that allow them to survive on their own. The green area is the dust trap, where the bigger particles accumulate. The size of the orbit of Neptune is shown in the upper left corner to show the scale. Credit: ALMA (ESO/NAOJ/NRAO)/Nienke van der Marel

Many complex organic molecules, such as dimethyl ether, are thought to arise in star-forming clouds, even before the stars themselves are born. In these cold environments, atoms and simple molecules like carbon monoxide stick to dust grains, forming an ice layer and undergoing chemical reactions, which result in more complex molecules. Researchers recently discovered that the dust trap in the IRS 48 disc is also an ice reservoir, harboring dust grains covered with this ice rich in complex molecules. It was in this region of the disc that ALMA has now spotted signs of the dimethyl ether molecule: as heating from IRS 48 sublimates the ice into gas, the trapped molecules inherited from the cold clouds are freed and become detectable.

READ  Hills vivem com fluxos de física


Este vídeo é ampliado com o sistema Oph-IRS 48, uma estrela cercada por um disco formado por um planeta contendo uma armadilha de poeira. Essa armadilha permite que partículas de poeira cresçam e multipliquem corpos maiores.

“O que torna isso ainda mais emocionante é que agora sabemos que essas moléculas maiores e complexas estão disponíveis para alimentar os planetas que se formam no disco”, explica Booth. “Isso não era conhecido anteriormente porque essas partículas estão escondidas no gelo na maioria dos sistemas”.

A descoberta do éter dimetílico sugere que muitas outras moléculas complexas comumente encontradas em regiões de formação de estrelas também podem estar à espreita nas estruturas geladas dos discos de formação de planetas. Essas moléculas são precursoras de moléculas prebióticas, como[{” attribute=””>amino acids and sugars, which are some of the basic building blocks of life.

Oph-IRS 48 in Ophiuchus Constellation

This chart shows the large constellation of Ophiuchus (The Serpent Bearer). Most of the stars that can be seen in a dark sky with the unaided eye are marked. The location of the system Oph-IRS 48 is indicated with a red circle. Credit: ESO, IAU and Sky & Telescope

By studying their formation and evolution, researchers can therefore gain a better understanding of how prebiotic molecules end up on planets, including our own. “We are incredibly pleased that we can now start to follow the entire journey of these complex molecules from the clouds that form stars, to planet-forming discs, and to comets. Hopefully, with more observations we can get a step closer to understanding the origin of prebiotic molecules in our own Solar System,” says Nienke van der Marel, a Leiden Observatory researcher who also participated in the study.

READ  Um 'tsunami' de ondas gravitacionais recorde foi detectado


Este vídeo é ampliado com o sistema Oph-IRS 48, uma estrela cercada por um disco formado por um planeta contendo uma armadilha de poeira. Essa armadilha permite que partículas de poeira cresçam e multipliquem corpos maiores.

Estudos futuros do IRS 48 com o Extremely Large Telescope (ELT) do ESO, atualmente em construção no Chile e programado para começar a operar ainda nesta década, permitirão à equipe estudar a química das regiões internas do disco, onde planetas como a Terra podem se formar .

Referência: “Uma grande armadilha de gelo assimétrica em um disco de formação planetária: III. Primeira detecção de éter dimetílico” por Nasante JC Bronkin, Alice S. Booth, Margot Lemker, Bona Nazari, Ninke van der Marel e Ewen F. Van Dyschoek , 8 de março de 2022, Astronomia e astrofísica.
DOI: 10.1051/0004-6361/202142981

Esta publicação foi lançada no Dia Internacional da Mulher 2022 e inclui pesquisas de seis mulheres pesquisadoras.

A equipe é composta por Nashanty GC Brunken (Observatório de Leiden, Universidade de Leiden, Holanda [Leiden]), Alice S. Booth (Leiden), Margot Lemker (Leiden), Boneh Nazari (Leiden), Ninke van der Marel (Leiden), Ewen F. Van Dyschoek (Observatório de Leiden, Instituto Max Planck para Missões Estrangeiras, Garching, Alemanha)

Continue Reading
Click to comment

Leave a Reply

O seu endereço de e-mail não será publicado. Campos obrigatórios são marcados com *

science

Uma descoberta de meteorito sem precedentes desafia modelos astrofísicos

Published

on

Uma descoberta de meteorito sem precedentes desafia modelos astrofísicos

Os pesquisadores descobriram uma rara partícula de poeira em um meteorito, feita de uma estrela diferente do nosso Sol. Usando tomografia de sonda atômica avançada, eles analisaram a proporção única de isótopos de magnésio da partícula, revelando sua origem em um tipo recentemente identificado de supernova que queima hidrogênio. Esta descoberta fornece insights mais profundos sobre eventos cósmicos e formação de estrelas. Crédito: SciTechDaily.com

Os cientistas descobriram uma partícula de meteorito com uma proporção isotópica de magnésio sem precedentes, sugerindo a sua origem numa supernova que queima hidrogénio.

A pesquisa descobriu uma rara partícula de poeira presa em um antigo meteorito extraterrestre, formado por uma estrela diferente do nosso Sol.

A descoberta foi feita pela autora principal, Dra. Nicole Neville, e colegas durante seus estudos de doutorado na Curtin University, que agora trabalha no Instituto de Ciência Lunar e Planetária em colaboração com… NASACentro Espacial Johnson.

Meteoritos e grãos pré-solares

Os meteoritos são feitos principalmente de material formado em nosso sistema solar e também podem conter pequenas partículas originárias de estrelas que nasceram muito antes do nosso sol.

Evidências de que essas partículas, conhecidas como grãos pré-solares, são restos de outras estrelas foram encontradas através da análise dos diferentes tipos de elementos encontrados dentro delas.

Técnicas analíticas inovadoras

Dr. Neville usou uma técnica chamada milho Sonda de tomografia para analisar partículas, reconstruir a química em nível atômico e acessar as informações ocultas nelas.

Dr Neville disse: “Essas partículas são como cápsulas do tempo celestiais, fornecendo um instantâneo da vida de sua estrela-mãe”.

“Os materiais criados no nosso sistema solar têm proporções previsíveis de isótopos – diferentes tipos de elementos com diferentes números de nêutrons. A partícula que analisamos tem uma proporção de isótopos de magnésio que é diferente de qualquer coisa no nosso sistema solar.

READ  Uma cápsula da SpaceX está trazendo de volta uma tripulação de quatro pessoas de uma missão na estação espacial

“Os resultados foram literalmente fora dos gráficos. A proporção isotópica mais extrema para o magnésio de estudos anteriores de grãos pré-solares foi de cerca de 1.200. O grão em nosso estudo tem um valor de 3.025, o valor mais alto já descoberto.

“Esta razão isotópica excepcionalmente elevada só pode ser explicada pela formação num tipo de estrela recentemente descoberto – uma supernova que queima hidrogénio.”

Avanços na astrofísica

O coautor, Dr. David Saxey, do Centro John D. Laiter em Curtin, disse: “A pesquisa abre novos horizontes na forma como entendemos o universo, ultrapassando os limites das técnicas analíticas e dos modelos astrofísicos.

“A sonda atômica nos deu todo um nível de detalhe que não conseguimos acessar em estudos anteriores”, disse o Dr. Saksi.

“Uma supernova que queima hidrogênio é um tipo de estrela que só foi descoberta recentemente, mais ou menos na mesma época em que estávamos analisando a minúscula partícula de poeira. Usar uma sonda atômica neste estudo nos dá um novo nível de detalhe que nos ajuda a entender como essas estrelas forma.”

Vinculando resultados de laboratório a fenômenos cósmicos

O co-autor, Professor Phil Bland, da Curtin School of Earth and Planetary Sciences, disse: “Novas descobertas do estudo de partículas raras em meteoritos permitem-nos obter informações sobre eventos cósmicos fora do nosso sistema solar.

“É simplesmente incrível poder correlacionar medições em escala atômica em laboratório com um tipo de estrela recentemente descoberto.”

Pesquisa intitulada “Elemento atômico e investigação isotópica 25Poeira estelar rica em magnésio de supernovas que queimam H. Foi publicado em Jornal Astrofísico.

Referência: “Elemento em escala atômica e investigação isotópica 25“Poeira estelar rica em Mg de uma supernova que queima H”, por N. D. Nevill, P. A. Bland, D. W. Saxey, W. D. A. Rickard e P. Guagliardo, NE Timms, LV Forman e L. Daly e SM Reddy, 28 de março de 2024, Jornal Astrofísico.
doi: 10.3847/1538-4357/ad2996

READ  Um ex-terapeuta do Google compartilha os cinco tipos de perfeccionistas - e o que os torna tão bem-sucedidos

Continue Reading

science

O CDC afirma que os caçadores não contraíram a doença do “cervo zumbi” por causa da carne de veado

Published

on

O CDC afirma que os caçadores não contraíram a doença do “cervo zumbi” por causa da carne de veado

Continue Reading

science

Encontrando os sinais de vida mais promissores em outro planeta, cortesia de James Webb

Published

on

Encontrando os sinais de vida mais promissores em outro planeta, cortesia de James Webb

Os cientistas estão se concentrando na detecção de sulfeto de dimetila (DMS) em sua atmosfera.

O Telescópio Espacial James Webb (JWST), o telescópio mais poderoso já lançado, está pronto para iniciar uma missão de observação crucial na busca por vida extraterrestre.

Como reportado vezes, O telescópio irá focar-se num planeta distante que orbita uma estrela anã vermelha, K2-18b, localizada a 124 anos-luz de distância.

K2-18b chamou a atenção dos cientistas devido à sua capacidade de abrigar vida. Acredita-se que seja um mundo coberto por oceanos e cerca de 2,6 vezes maior que a Terra.

O elemento-chave que os cientistas procuram é o sulfeto de dimetila (DMS), um gás com uma propriedade notável. Segundo a NASA, o DMS é produzido na Terra apenas pela vida, principalmente pelo fitoplâncton marinho.

A presença de DMS na atmosfera de K2-18b seria uma descoberta importante, embora o Dr. Niku Madhusudan, astrofísico principal do estudo de Cambridge, acautele contra tirar conclusões precipitadas. Embora os dados preliminares do Telescópio Espacial James Webb indiquem uma alta probabilidade (mais de 50%) da presença do DMS, são necessárias análises mais aprofundadas. O telescópio dedicará oito horas de observação na sexta-feira, seguidas de meses de processamento de dados antes de chegar a uma resposta definitiva.

A falta de um processo natural, geológico ou químico conhecido para gerar DMS na ausência de vida acrescenta peso à excitação. No entanto, mesmo que isto se confirme, a enorme distância entre o K2-18b representa um obstáculo tecnológico. Viajando à velocidade da sonda Voyager (38.000 mph), a sonda levaria 2,2 milhões de anos para chegar ao planeta.

Apesar da sua enorme distância, a capacidade do Telescópio Espacial James Webb de analisar a composição química da atmosfera de um planeta através da análise espectroscópica da luz estelar filtrada através das suas nuvens fornece uma nova janela para a possibilidade de vida extraterrestre. Esta missão tem o potencial de responder à antiga questão de saber se estamos realmente sozinhos no universo.

READ  Cientistas: a lua de Júpiter Europa pode ter água onde a vida poderia existir | Júpiter

As próximas observações também visam esclarecer a presença de metano e dióxido de carbono na atmosfera do K2-18b, potencialmente resolvendo o “problema da falta de metano” que tem intrigado os cientistas há mais de uma década. Embora o trabalho teórico sobre fontes não biológicas do gás prossiga, as conclusões finais são esperadas nos próximos quatro a seis meses.

Continue Reading

Trending

Copyright © 2023