Connect with us

science

Uma estrela morta apanhada destruindo violentamente o sistema planetário

Published

on

Uma estrela morta apanhada destruindo violentamente o sistema planetário

Esta ilustração mostra uma estrela anã branca puxando detritos de corpos destruídos em um sistema planetário. O Telescópio Espacial Hubble detecta a assinatura espectroscópica de detritos em evaporação que revelaram uma mistura de material rochoso mineral e gelado, que são os componentes dos planetas. Os resultados ajudam a descrever a natureza violenta de sistemas planetários avançados e a composição de seus corpos em ruínas. Crédito: NASA, ESA, Joseph Olmsted (STScI)

Objetos rochosos e gelados foram identificados entre os detritos na superfície de uma estrela anã branca

“Tire seus mortos!” Loops no ar no clássico filme “Monty Python and the Holy Grail”, uma cena paralela do que acontece por aí[{” attribute=””>white dwarf star in a nearby planetary system. The dead star is “ringing” its own bell, calling out to the “dead” to collect at its footsteps. The white dwarf is all that remains after a Sun-like star has exhausted its nuclear fuel and expelled most of its outer material – decimating objects in the planetary system that orbit it. What’s left is a band of players with unpredictable orbits that – despite protests that they “aren’t dead yet!” – will ultimately be captured by the central star.

How do we know? The bodies consumed by the star leave telltale “fingerprints” – caught by the Hubble Space Telescope and other NASA observatories – on its surface. The spectral evidence shows that the white dwarf is siphoning off both rocky-metallic and icy material – debris from both its system’s inner and outer reaches. Uncovering evidence of icy bodies is intriguing, since it implies that a “water reservoir” might be common on the edges of planetary systems, improving the chances for the emergence of life as we know it.


A dor da morte de uma estrela interrompeu tão violentamente o sistema planetário que a estrela morta que ela deixou para trás, chamada anã branca, está puxando detritos das cúspides internas e externas do sistema. Esta é a primeira vez que os astrônomos observaram uma estrela anã branca consumindo materiais rochosos minerais e gelados, que são os componentes dos planetas. Dados de arquivo do Telescópio Espacial Hubble da NASA e de outros observatórios da NASA foram essenciais para diagnosticar este caso de canibalismo cósmico. Os resultados ajudam a descrever a natureza violenta dos sistemas planetários avançados e podem informar os astrônomos sobre a composição dos sistemas recém-formados. crédito: Goddard Space Flight Center da NASA; Produtor principal: Paul Morris

A estrela morta apanhada destruindo o sistema planetário

A dor da morte de uma estrela interrompeu tão violentamente o sistema planetário que a estrela morta que ela deixou para trás, chamada anã branca, está puxando detritos das protuberâncias internas e externas do sistema. Esta é a primeira vez que os astrônomos observaram uma estrela anã branca consumindo material rochoso mineral e gelado, que são os componentes dos planetas.

READ  A Web da NASA dá uma olhada mais de perto em um planeta misterioso

Dados de arquivo do Telescópio Espacial Hubble da NASA e de outros observatórios da NASA foram essenciais para diagnosticar este caso de canibalismo cósmico. Os resultados ajudam a descrever a natureza violenta dos sistemas planetários avançados e podem informar os astrônomos sobre a composição dos sistemas recém-formados.

Os resultados são baseados na análise de material capturado pela atmosfera da estrela anã branca próxima G238-44. Uma anã branca é o que resta de uma estrela como o nosso sol depois de remover suas camadas externas e parar de queimar combustível através da fusão nuclear. “Nós nunca vimos esses dois tipos de corpos se acumulando em uma anã branca ao mesmo tempo”, disse Ted Johnson, investigador principal e recém-formado da Universidade da Califórnia, Los Angeles (UCLA). “Ao estudar essas anãs brancas, esperamos obter uma melhor compreensão dos sistemas planetários ainda intactos.”

Sistema Planetário G238-44

Esta ilustração do sistema planetário G238-44 traça sua destruição. Uma pequena estrela anã branca está no centro da ação. O disco de acreção extremamente fraco consiste em pedaços de corpos esfarrapados caindo sobre a anã branca. Os asteróides e os corpos planetários restantes formam um reservatório de material ao redor da estrela. Os planetas gigantes gasosos maiores ainda podem estar no sistema. Muito mais longe está um cinturão de corpos gelados, como cometas, que também eventualmente alimentam a estrela morta. Crédito: NASA, ESA, Joseph Olmsted (STScI)

As descobertas também são interessantes porque corpos pequenos e gelados são responsáveis ​​por colidir e “irrigar” os planetas secos e rochosos em nosso sistema solar. Bilhões de anos atrás, acredita-se que cometas e asteróides tenham fornecido água à Terra, criando as condições necessárias para a vida como a conhecemos. A composição dos corpos observados chovendo na anã branca sugere que reservatórios gelados podem ser comuns entre sistemas planetários, disse Johnson.

READ  Pesquisadores encontraram COVID-19 em ratos de esgoto da cidade de Nova York

“A vida como a conhecemos requer um planeta rochoso coberto com uma variedade de elementos, como carbono, nitrogênio e oxigênio”, disse Benjamin Zuckerman, professor e coautor da UCLA. “A abundância de elementos que vemos nesta anã branca parece exigir um corpo principal rochoso e rico em volatilidade – o primeiro exemplo que encontramos entre os estudos de centenas de anãs brancas”.

demolir derby

As teorias da evolução do sistema planetário descrevem a transição entre a estrela gigante vermelha e as fases anã branca como um processo caótico. Uma estrela está perdendo rapidamente suas camadas externas e as órbitas de seus planetas mudam drasticamente. Objetos pequenos, como asteroides e planetas anões, podem se aventurar perto de planetas gigantes e cair em direção à estrela. Este estudo confirma a verdadeira escala desta fase caótica violenta, mostrando que dentro de 100 milhões de anos após o início da fase anã branca, a estrela é capaz de capturar e consumir simultaneamente material do cinturão de asteróides e regiões semelhantes ao cinturão de Kuiper.

A massa total estimada devorada pela anã branca neste estudo pode não ser maior que a massa de um asteroide ou uma pequena lua. Embora a presença de pelo menos dois objetos consumidos pela anã branca não seja medida diretamente, é provável que um seja tão rico em minerais quanto um asteroide e o outro seja um objeto gelado semelhante ao encontrado nas franjas do nosso sistema solar no Cinturão de Kuiper.

Embora os astrônomos tenham classificado mais de 5.000 exoplanetas, a Terra é o único planeta para o qual temos algum conhecimento direto de sua composição interna. O canibalismo de anãs brancas oferece uma oportunidade única de separar planetas e aprender do que eles eram feitos quando se formaram ao redor da estrela.

READ  Onde ver a aurora boreal nesta temporada de férias

A equipe mediu a presença de nitrogênio, oxigênio, magnésio, silício e ferro, entre outros elementos. A descoberta de ferro em quantidades muito grandes é evidência da existência de núcleos metálicos de planetas terrestres, como a Terra,[{” attribute=””>Venus, Mars, and Mercury. Unexpectedly high nitrogen abundances led them to conclude the presence of icy bodies. “The best fit for our data was a nearly two-to-one mix of Mercury-like material and comet-like material, which is made up of ice and dust,” Johnson said. “Iron metal and nitrogen ice each suggest wildly different conditions of planetary formation. There is no known solar system object with so much of both.”

Death of a Planetary System

When a star like our Sun expands into a bloated red giant late in its life, it will shed mass by puffing off its outer layers. One consequence of this can be the gravitational scattering of small objects like asteroids, comets, and moons by any remaining large planets. Like pinballs in an arcade game, the surviving objects can be thrown into highly eccentric orbits.

“After the red giant phase, the white dwarf star that remains is compact – no larger than Earth. The wayward planets end up getting very close to the star and experience powerful tidal forces that tear them apart, creating a gaseous and dusty disk that eventually falls onto the white dwarf’s surface,” Johnson explained.

The researchers are looking at the ultimate scenario for the Sun’s evolution, 5 billion years from now. Earth might be completely vaporized along with the inner planets. But the orbits of many of the asteroids in the main asteroid belt will be gravitationally perturbed by Jupiter and will eventually fall onto the white dwarf that the remnant Sun will become.

For over two years, the research group at UCLA, the University of California, San Diego, and the Kiel University in Germany, has worked to unravel this mystery by analyzing the elements detected on the white dwarf star cataloged as G238-44. Their analysis includes data from NASA’s retired Far Ultraviolet Spectroscopic Explorer (FUSE), the Keck Observatory’s High Resolution Echelle Spectrometer (HIRES) in Hawaii, and the Hubble Space Telescope’s Cosmic Origins Spectrograph (COS) and Space Telescope Imaging Spectrograph (STIS).

The team’s results were presented at an American Astronomical Society (AAS) press conference on Wednesday, June 15, 2022.

The Hubble Space Telescope is a project of international cooperation between NASA and ESA (European Space Agency). NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope. The Space Telescope Science Institute (STScI) in Baltimore, Maryland, conducts Hubble science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy, in Washington, D.C.

Continue Reading
Click to comment

Leave a Reply

O seu endereço de e-mail não será publicado. Campos obrigatórios são marcados com *

science

Uma descoberta de meteorito sem precedentes desafia modelos astrofísicos

Published

on

Uma descoberta de meteorito sem precedentes desafia modelos astrofísicos

Os pesquisadores descobriram uma rara partícula de poeira em um meteorito, feita de uma estrela diferente do nosso Sol. Usando tomografia de sonda atômica avançada, eles analisaram a proporção única de isótopos de magnésio da partícula, revelando sua origem em um tipo recentemente identificado de supernova que queima hidrogênio. Esta descoberta fornece insights mais profundos sobre eventos cósmicos e formação de estrelas. Crédito: SciTechDaily.com

Os cientistas descobriram uma partícula de meteorito com uma proporção isotópica de magnésio sem precedentes, sugerindo a sua origem numa supernova que queima hidrogénio.

A pesquisa descobriu uma rara partícula de poeira presa em um antigo meteorito extraterrestre, formado por uma estrela diferente do nosso Sol.

A descoberta foi feita pela autora principal, Dra. Nicole Neville, e colegas durante seus estudos de doutorado na Curtin University, que agora trabalha no Instituto de Ciência Lunar e Planetária em colaboração com… NASACentro Espacial Johnson.

Meteoritos e grãos pré-solares

Os meteoritos são feitos principalmente de material formado em nosso sistema solar e também podem conter pequenas partículas originárias de estrelas que nasceram muito antes do nosso sol.

Evidências de que essas partículas, conhecidas como grãos pré-solares, são restos de outras estrelas foram encontradas através da análise dos diferentes tipos de elementos encontrados dentro delas.

Técnicas analíticas inovadoras

Dr. Neville usou uma técnica chamada milho Sonda de tomografia para analisar partículas, reconstruir a química em nível atômico e acessar as informações ocultas nelas.

Dr Neville disse: “Essas partículas são como cápsulas do tempo celestiais, fornecendo um instantâneo da vida de sua estrela-mãe”.

“Os materiais criados no nosso sistema solar têm proporções previsíveis de isótopos – diferentes tipos de elementos com diferentes números de nêutrons. A partícula que analisamos tem uma proporção de isótopos de magnésio que é diferente de qualquer coisa no nosso sistema solar.

READ  Ars percorre a sala limpa da espaçonave Psyche em órbita de asteroides no JPL

“Os resultados foram literalmente fora dos gráficos. A proporção isotópica mais extrema para o magnésio de estudos anteriores de grãos pré-solares foi de cerca de 1.200. O grão em nosso estudo tem um valor de 3.025, o valor mais alto já descoberto.

“Esta razão isotópica excepcionalmente elevada só pode ser explicada pela formação num tipo de estrela recentemente descoberto – uma supernova que queima hidrogénio.”

Avanços na astrofísica

O coautor, Dr. David Saxey, do Centro John D. Laiter em Curtin, disse: “A pesquisa abre novos horizontes na forma como entendemos o universo, ultrapassando os limites das técnicas analíticas e dos modelos astrofísicos.

“A sonda atômica nos deu todo um nível de detalhe que não conseguimos acessar em estudos anteriores”, disse o Dr. Saksi.

“Uma supernova que queima hidrogênio é um tipo de estrela que só foi descoberta recentemente, mais ou menos na mesma época em que estávamos analisando a minúscula partícula de poeira. Usar uma sonda atômica neste estudo nos dá um novo nível de detalhe que nos ajuda a entender como essas estrelas forma.”

Vinculando resultados de laboratório a fenômenos cósmicos

O co-autor, Professor Phil Bland, da Curtin School of Earth and Planetary Sciences, disse: “Novas descobertas do estudo de partículas raras em meteoritos permitem-nos obter informações sobre eventos cósmicos fora do nosso sistema solar.

“É simplesmente incrível poder correlacionar medições em escala atômica em laboratório com um tipo de estrela recentemente descoberto.”

Pesquisa intitulada “Elemento atômico e investigação isotópica 25Poeira estelar rica em magnésio de supernovas que queimam H. Foi publicado em Jornal Astrofísico.

Referência: “Elemento em escala atômica e investigação isotópica 25“Poeira estelar rica em Mg de uma supernova que queima H”, por N. D. Nevill, P. A. Bland, D. W. Saxey, W. D. A. Rickard e P. Guagliardo, NE Timms, LV Forman e L. Daly e SM Reddy, 28 de março de 2024, Jornal Astrofísico.
doi: 10.3847/1538-4357/ad2996

READ  Rastreamos 5 rajadas de rádio rápidas e misteriosas até os braços de galáxias espirais distantes

Continue Reading

science

O CDC afirma que os caçadores não contraíram a doença do “cervo zumbi” por causa da carne de veado

Published

on

O CDC afirma que os caçadores não contraíram a doença do “cervo zumbi” por causa da carne de veado

Continue Reading

science

Encontrando os sinais de vida mais promissores em outro planeta, cortesia de James Webb

Published

on

Encontrando os sinais de vida mais promissores em outro planeta, cortesia de James Webb

Os cientistas estão se concentrando na detecção de sulfeto de dimetila (DMS) em sua atmosfera.

O Telescópio Espacial James Webb (JWST), o telescópio mais poderoso já lançado, está pronto para iniciar uma missão de observação crucial na busca por vida extraterrestre.

Como reportado vezes, O telescópio irá focar-se num planeta distante que orbita uma estrela anã vermelha, K2-18b, localizada a 124 anos-luz de distância.

K2-18b chamou a atenção dos cientistas devido à sua capacidade de abrigar vida. Acredita-se que seja um mundo coberto por oceanos e cerca de 2,6 vezes maior que a Terra.

O elemento-chave que os cientistas procuram é o sulfeto de dimetila (DMS), um gás com uma propriedade notável. Segundo a NASA, o DMS é produzido na Terra apenas pela vida, principalmente pelo fitoplâncton marinho.

A presença de DMS na atmosfera de K2-18b seria uma descoberta importante, embora o Dr. Niku Madhusudan, astrofísico principal do estudo de Cambridge, acautele contra tirar conclusões precipitadas. Embora os dados preliminares do Telescópio Espacial James Webb indiquem uma alta probabilidade (mais de 50%) da presença do DMS, são necessárias análises mais aprofundadas. O telescópio dedicará oito horas de observação na sexta-feira, seguidas de meses de processamento de dados antes de chegar a uma resposta definitiva.

A falta de um processo natural, geológico ou químico conhecido para gerar DMS na ausência de vida acrescenta peso à excitação. No entanto, mesmo que isto se confirme, a enorme distância entre o K2-18b representa um obstáculo tecnológico. Viajando à velocidade da sonda Voyager (38.000 mph), a sonda levaria 2,2 milhões de anos para chegar ao planeta.

Apesar da sua enorme distância, a capacidade do Telescópio Espacial James Webb de analisar a composição química da atmosfera de um planeta através da análise espectroscópica da luz estelar filtrada através das suas nuvens fornece uma nova janela para a possibilidade de vida extraterrestre. Esta missão tem o potencial de responder à antiga questão de saber se estamos realmente sozinhos no universo.

READ  O mandato da máscara para funcionários do BJC está de volta

As próximas observações também visam esclarecer a presença de metano e dióxido de carbono na atmosfera do K2-18b, potencialmente resolvendo o “problema da falta de metano” que tem intrigado os cientistas há mais de uma década. Embora o trabalho teórico sobre fontes não biológicas do gás prossiga, as conclusões finais são esperadas nos próximos quatro a seis meses.

Continue Reading

Trending

Copyright © 2023